Cell-ontology guided transcriptome foundation model
- URL: http://arxiv.org/abs/2408.12373v1
- Date: Thu, 22 Aug 2024 13:15:49 GMT
- Title: Cell-ontology guided transcriptome foundation model
- Authors: Xinyu Yuan, Zhihao Zhan, Zuobai Zhang, Manqi Zhou, Jianan Zhao, Boyu Han, Yue Li, Jian Tang,
- Abstract summary: We present textbfsingle textbfcell, textbfCell-textbfontology guided TFM scCello.
Our TFM demonstrates competitive and transferability performance over the existing TFMs on biologically important tasks.
- Score: 18.51941953027685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transcriptome foundation models TFMs hold great promises of deciphering the transcriptomic language that dictate diverse cell functions by self-supervised learning on large-scale single-cell gene expression data, and ultimately unraveling the complex mechanisms of human diseases. However, current TFMs treat cells as independent samples and ignore the taxonomic relationships between cell types, which are available in cell ontology graphs. We argue that effectively leveraging this ontology information during the TFM pre-training can improve learning biologically meaningful gene co-expression patterns while preserving TFM as a general purpose foundation model for downstream zero-shot and fine-tuning tasks. To this end, we present \textbf{s}ingle \textbf{c}ell, \textbf{Cell}-\textbf{o}ntology guided TFM scCello. We introduce cell-type coherence loss and ontology alignment loss, which are minimized along with the masked gene expression prediction loss during the pre-training. The novel loss component guide scCello to learn the cell-type-specific representation and the structural relation between cell types from the cell ontology graph, respectively. We pre-trained scCello on 22 million cells from CellxGene database leveraging their cell-type labels mapped to the cell ontology graph from Open Biological and Biomedical Ontology Foundry. Our TFM demonstrates competitive generalization and transferability performance over the existing TFMs on biologically important tasks including identifying novel cell types of unseen cells, prediction of cell-type-specific marker genes, and cancer drug responses.
Related papers
- Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
We present Cell Flow for Generation, a flow-based conditional generative model for multi-modal single-cell counts.
Our results suggest improved recovery of crucial biological data characteristics while accounting for novel generative tasks.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
Single-cell datasets often lack individual cell labels, making it challenging to identify cells associated with disease.
We introduce Mixture Modeling for Multiple Learning Instance (MMIL), an expectation method that enables the training and calibration of cell-level classifiers.
arXiv Detail & Related papers (2024-06-12T15:22:56Z) - LangCell: Language-Cell Pre-training for Cell Identity Understanding [3.6518971609937068]
We introduce LangCell, a unified representation of single-cell data and natural language during the pre-training phase.
Results show that LangCell is the only single-cell PLM that can work effectively in zero-shot cell identity understanding scenarios.
arXiv Detail & Related papers (2024-05-09T10:04:05Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
Graph neural networks (GNNs) have been widely used for automatic cell type classification.
scBiGNN comprises two GNN modules to identify cell types.
scBiGNN outperforms a variety of existing methods for cell type classification from scRNA-seq data.
arXiv Detail & Related papers (2023-12-16T03:54:26Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Revolutionizing Single Cell Analysis: The Power of Large Language Models
for Cell Type Annotation [0.0]
Large language models such as ChatGPT and New Bing provide accurate annotations of cell types.
By using ChatGPT to annotate single cell data, we can relate rare cell type to their function.
This can have important applications in understanding cancer progression, mammalian development, and stem cell differentiation.
arXiv Detail & Related papers (2023-04-05T18:45:54Z) - Topology-Guided Multi-Class Cell Context Generation for Digital
Pathology [28.43244574309888]
We introduce several mathematical tools from spatial statistics and topological data analysis.
We generate high quality multi-class cell layouts for the first time.
We show that the topology-rich cell layouts can be used for data augmentation and improve the performance of downstream tasks such as cell classification.
arXiv Detail & Related papers (2023-04-05T07:01:34Z) - OCELOT: Overlapped Cell on Tissue Dataset for Histopathology [13.691924123273004]
We release OCELOT, a dataset dedicated to the study of cell-tissue relationships for cell detection in histopathology.
We propose multi-task learning approaches that benefit from learning both cell and tissue tasks simultaneously.
On the OCELOT test set in particular, we show up to 6.79 improvement in F1-score.
arXiv Detail & Related papers (2023-03-23T08:57:11Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Net is a framework based on graph neural networks with lagged message passing for Granger causal inference on DAG-structured systems.
Our application is the analysis of single-cell multimodal data to identify genomic loci that mediate the regulation of specific genes.
arXiv Detail & Related papers (2022-10-18T21:15:10Z) - Cell abundance aware deep learning for cell detection on highly
imbalanced pathological data [0.0]
In digital pathology, less abundant cell types can be of biological significance.
We proposed a deep learning pipeline that considers the abundance of cell types during model training.
We found that scaling deep learning loss function by the abundance of cells improves cell detection performance.
arXiv Detail & Related papers (2021-02-23T13:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.