Cross-Domain Foundation Model Adaptation: Pioneering Computer Vision Models for Geophysical Data Analysis
- URL: http://arxiv.org/abs/2408.12396v1
- Date: Thu, 22 Aug 2024 13:41:18 GMT
- Title: Cross-Domain Foundation Model Adaptation: Pioneering Computer Vision Models for Geophysical Data Analysis
- Authors: Zhixiang Guo, Xinming Wu, Luming Liang, Hanlin Sheng, Nuo Chen, Zhengfa Bi,
- Abstract summary: We explore adapting foundation models (FMs) from the computer vision domain to geoscience.
This study considers adapting FMs from computer vision to geoscience, analyzing their scale, adaptability, and generality for geoscientific data analysis.
We introduce a workflow that leverages existing computer vision FMs, fine-tuning them for geoscientific tasks, reducing development costs while enhancing accuracy.
- Score: 18.928794841454312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore adapting foundation models (FMs) from the computer vision domain to geoscience. FMs, large neural networks trained on massive datasets, excel in diverse tasks with remarkable adaptability and generality. However, geoscience faces challenges like lacking curated training datasets and high computational costs for developing specialized FMs. This study considers adapting FMs from computer vision to geoscience, analyzing their scale, adaptability, and generality for geoscientific data analysis. We introduce a workflow that leverages existing computer vision FMs, fine-tuning them for geoscientific tasks, reducing development costs while enhancing accuracy. Through experiments, we demonstrate this workflow's effectiveness in broad applications to process and interpret geoscientific data of lunar images, seismic data, DAS arrays and so on. Our findings introduce advanced ML techniques to geoscience, proving the feasibility and advantages of cross-domain FMs adaptation, driving further advancements in geoscientific data analysis and offering valuable insights for FMs applications in other scientific domains.
Related papers
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
This survey systematically reviews the emerging field of Remote Sensing Foundation Models (RSFMs)
It begins with an outline of their motivation and background, followed by an introduction of their foundational concepts.
We benchmark these models against publicly available datasets, discuss existing challenges, and propose future research directions.
arXiv Detail & Related papers (2024-10-22T01:08:21Z) - AI Foundation Model for Heliophysics: Applications, Design, and Implementation [1.2851259989174175]
Foundation models (FMs) are pre-trained on a large-scale datasets.
This paper provides our perspective on the criteria for designing an FM for heliophysics.
We believe that this is the first study to design an FM in the domain of heliophysics.
arXiv Detail & Related papers (2024-09-30T15:48:28Z) - Geospatial foundation models for image analysis: evaluating and enhancing NASA-IBM Prithvi's domain adaptability [3.7899026023232136]
This paper evaluates the recently released NASA-IBM GFM Prithvi for its predictive performance on high-level image analysis tasks.
Prithvi is one of the first open-source GFMs trained on time-series of high-resolution remote sensing imagery.
arXiv Detail & Related papers (2024-08-31T15:51:23Z) - Towards Vision-Language Geo-Foundation Model: A Survey [65.70547895998541]
Vision-Language Foundation Models (VLFMs) have made remarkable progress on various multimodal tasks.
This paper thoroughly reviews VLGFMs, summarizing and analyzing recent developments in the field.
arXiv Detail & Related papers (2024-06-13T17:57:30Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
Foundations models (FMs) have ushered in a new era in computational biology, especially in the realm of deep learning.
Central to our focus is the application of FMs to specific biological problems, aiming to guide the research community in choosing appropriate FMs for their research needs.
Review analyses challenges and limitations faced by FMs in biology, such as data noise, model explainability, and potential biases.
arXiv Detail & Related papers (2024-02-06T02:29:17Z) - Position: Graph Foundation Models are Already Here [53.737868336014735]
Graph Foundation Models (GFMs) are emerging as a significant research topic in the graph domain.
We propose a novel perspective for the GFM development by advocating for a graph vocabulary''
This perspective can potentially advance the future GFM design in line with the neural scaling laws.
arXiv Detail & Related papers (2024-02-03T17:24:36Z) - Challenges in data-based geospatial modeling for environmental research
and practice [19.316860936437823]
Data-based geospatial modelling using machine learning (ML) has gained popularity in environmental research.
This survey reviews common nuances in geospatial modelling, such as imbalanced data, spatial autocorrelation, prediction errors, model generalisation, domain specificity, and uncertainty estimation.
arXiv Detail & Related papers (2023-11-18T12:30:49Z) - Assessment of a new GeoAI foundation model for flood inundation mapping [4.312965283062856]
This paper evaluates the performance of the first-of-its-kind geospatial foundation model, IBM-NASA's Prithvi, to support a crucial geospatial analysis task: flood inundation mapping.
A benchmark dataset, Sen1Floods11, is used in the experiments, and the models' predictability, generalizability, and transferability are evaluated.
Results show the good transferability of the Prithvi model, highlighting its performance advantages in segmenting flooded areas in previously unseen regions.
arXiv Detail & Related papers (2023-09-25T19:50:47Z) - When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System [6.445323648941926]
Geoscience foundation models (GFMs) are a paradigm-shifting solution, integrating extensive cross-disciplinary data to enhance the simulation and understanding of Earth system dynamics.
The unique strengths of GFMs include flexible task specification, diverse input-output capabilities, and multi-modal knowledge representation.
This review offers a comprehensive overview of emerging geoscientific research paradigms, emphasizing the untapped opportunities at the intersection of advanced AI techniques and geoscience.
arXiv Detail & Related papers (2023-09-13T08:44:09Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
We study the problem of geographic robustness and make three main contributions.
First, we introduce a large-scale dataset GeoNet for geographic adaptation.
Second, we hypothesize that the major source of domain shifts arise from significant variations in scene context.
Third, we conduct an extensive evaluation of several state-of-the-art unsupervised domain adaptation algorithms and architectures.
arXiv Detail & Related papers (2023-03-27T17:59:34Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.