Grounding Fallacies Misrepresenting Scientific Publications in Evidence
- URL: http://arxiv.org/abs/2408.12812v2
- Date: Fri, 07 Feb 2025 08:18:00 GMT
- Title: Grounding Fallacies Misrepresenting Scientific Publications in Evidence
- Authors: Max Glockner, Yufang Hou, Preslav Nakov, Iryna Gurevych,
- Abstract summary: We introduce MissciPlus, an extension of the fallacy detection dataset Missci.
MissciPlus pairs the real-world misrepresented evidence with incorrect claims, identical to the input to evidence-based fact-checking models.
Our findings show that current fact-checking models struggle to use misrepresented scientific passages to refute misinformation.
- Score: 84.32990746227385
- License:
- Abstract: Health-related misinformation claims often falsely cite a credible biomedical publication as evidence. These publications only superficially seem to support the false claim, when logical fallacies are applied. In this work, we aim to detect and to highlight such fallacies, which requires assessing the exact content of the misrepresented publications. To achieve this, we introduce MissciPlus, an extension of the fallacy detection dataset Missci. MissciPlus extends Missci by grounding the applied fallacies in real-world passages from misrepresented studies. This creates a realistic test-bed for detecting and verbalizing fallacies under real-world input conditions, and enables new and realistic passage-retrieval tasks. MissciPlus is the first logical fallacy dataset which pairs the real-world misrepresented evidence with incorrect claims, identical to the input to evidence-based fact-checking models. With MissciPlus, we i) benchmark retrieval models in identifying passages that support claims only with fallacious reasoning, ii) evaluate how well LLMs verbalize fallacious reasoning based on misrepresented scientific passages, and iii) assess the effectiveness of fact-checking models in refuting claims that misrepresent biomedical research. Our findings show that current fact-checking models struggle to use misrepresented scientific passages to refute misinformation. Moreover, these passages can mislead LLMs into accepting false claims as true.
Related papers
- Missci: Reconstructing Fallacies in Misrepresented Science [84.32990746227385]
Health-related misinformation on social networks can lead to poor decision-making and real-world dangers.
Missci is a novel argumentation theoretical model for fallacious reasoning.
We present Missci as a dataset to test the critical reasoning abilities of large language models.
arXiv Detail & Related papers (2024-06-05T12:11:10Z) - Missing Counter-Evidence Renders NLP Fact-Checking Unrealistic for
Misinformation [67.69725605939315]
Misinformation emerges in times of uncertainty when credible information is limited.
This is challenging for NLP-based fact-checking as it relies on counter-evidence, which may not yet be available.
arXiv Detail & Related papers (2022-10-25T09:40:48Z) - Generating Literal and Implied Subquestions to Fact-check Complex Claims [64.81832149826035]
We focus on decomposing a complex claim into a comprehensive set of yes-no subquestions whose answers influence the veracity of the claim.
We present ClaimDecomp, a dataset of decompositions for over 1000 claims.
We show that these subquestions can help identify relevant evidence to fact-check the full claim and derive the veracity through their answers.
arXiv Detail & Related papers (2022-05-14T00:40:57Z) - Generating Scientific Claims for Zero-Shot Scientific Fact Checking [54.62086027306609]
Automated scientific fact checking is difficult due to the complexity of scientific language and a lack of significant amounts of training data.
We propose scientific claim generation, the task of generating one or more atomic and verifiable claims from scientific sentences.
We also demonstrate its usefulness in zero-shot fact checking for biomedical claims.
arXiv Detail & Related papers (2022-03-24T11:29:20Z) - Automatic Fake News Detection: Are Models Learning to Reason? [9.143551270841858]
We investigate the relationship and importance of both claim and evidence.
Surprisingly, we find on political fact checking datasets that most often the highest effectiveness is obtained by utilizing only the evidence.
This highlights an important problem in what constitutes evidence in existing approaches for automatic fake news detection.
arXiv Detail & Related papers (2021-05-17T09:34:03Z) - AmbiFC: Fact-Checking Ambiguous Claims with Evidence [57.7091560922174]
We present AmbiFC, a fact-checking dataset with 10k claims derived from real-world information needs.
We analyze disagreements arising from ambiguity when comparing claims against evidence in AmbiFC.
We develop models for predicting veracity handling this ambiguity via soft labels.
arXiv Detail & Related papers (2021-04-01T17:40:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.