Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates
- URL: http://arxiv.org/abs/2408.13006v1
- Date: Fri, 23 Aug 2024 11:49:01 GMT
- Title: Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates
- Authors: Hui Wei, Shenghua He, Tian Xia, Andy Wong, Jingyang Lin, Mei Han,
- Abstract summary: Commercial large language models (LLMs) like GPT-4 have been recently employed to evaluate and compare different alignment approaches.
We develop a framework to evaluate, compare, and visualize the reliability and alignment of LLM judges.
- Score: 10.091146498861333
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Alignment approaches such as RLHF and DPO are actively investigated to align large language models (LLMs) with human preferences. Commercial large language models (LLMs) like GPT-4 have been recently employed to evaluate and compare different LLM alignment approaches. These models act as surrogates for human evaluators due to their promising abilities to approximate human preferences with remarkably faster feedback and lower costs. This methodology is referred to as LLM-as-a-judge. However, concerns regarding its reliability have emerged, attributed to LLM judges' biases and inconsistent decision-making. Previous research has sought to develop robust evaluation frameworks for assessing the reliability of LLM judges and their alignment with human preferences. However, the employed evaluation metrics often lack adequate explainability and fail to address the internal inconsistency of LLMs. Additionally, existing studies inadequately explore the impact of various prompt templates when applying LLM-as-a-judge methods, which leads to potentially inconsistent comparisons between different alignment algorithms. In this work, we systematically evaluate LLM judges on alignment tasks (e.g. summarization) by defining evaluation metrics with improved theoretical interpretability and disentangling reliability metrics with LLM internal inconsistency. We develop a framework to evaluate, compare, and visualize the reliability and alignment of LLM judges to provide informative observations that help choose LLM judges for alignment tasks. Our results indicate a significant impact of prompt templates on LLM judge performance, as well as a mediocre alignment level between the tested LLM judges and human evaluators.
Related papers
- An Empirical Analysis of Uncertainty in Large Language Model Evaluations [28.297464655099034]
We conduct experiments involving 9 widely used LLM evaluators across 2 different evaluation settings.
We pinpoint that LLM evaluators exhibit varying uncertainty based on model families and sizes.
We find that employing special prompting strategies, whether during inference or post-training, can alleviate evaluation uncertainty to some extent.
arXiv Detail & Related papers (2025-02-15T07:45:20Z) - Re-evaluating Automatic LLM System Ranking for Alignment with Human Preference [63.03859517284341]
An automatic evaluation framework aims to rank LLMs based on their alignment with human preferences.
An automatic LLM bencher consists of four components: the input set, the evaluation model, the evaluation type and the aggregation method.
arXiv Detail & Related papers (2024-12-31T17:46:51Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - Evaluating the Evaluator: Measuring LLMs' Adherence to Task Evaluation Instructions [18.93335792080899]
We investigate how much influence prompting the LLMs-as-a-judge has on the alignment of AI judgements to human judgements.
We aggregate a taxonomy of quality criteria commonly used across state-of-the-art evaluations with LLMs and provide this as a rigorous benchmark of models as judges.
arXiv Detail & Related papers (2024-08-16T14:49:35Z) - Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments [41.25558612970942]
We show that large language models (LLMs) exhibit preference biases and worrying sensitivity to prompt designs.
Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO.
arXiv Detail & Related papers (2024-06-17T09:48:53Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
We show that Large Language Models (LLMs) are biased evaluators as they exhibit familiarity bias and show skewed distributions of ratings.
We also found that LLMs are inconsistent evaluators, showing low "inter-sample" agreement and sensitivity to prompt differences that are insignificant to human understanding of text quality.
arXiv Detail & Related papers (2024-05-02T20:42:28Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language.
LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments.
We introduce Pairwise-preference Search (PAIRS), an uncertainty-guided search-based rank aggregation method that employs LLMs to conduct pairwise comparisons locally and efficiently ranks candidate texts globally.
arXiv Detail & Related papers (2024-03-25T17:11:28Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
We propose ScaleEval, an agent-debate-assisted meta-evaluation framework.
We release the code for our framework, which is publicly available on GitHub.
arXiv Detail & Related papers (2024-01-30T07:03:32Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.