Say No to Freeloader: Protecting Intellectual Property of Your Deep Model
- URL: http://arxiv.org/abs/2408.13161v2
- Date: Tue, 27 Aug 2024 14:05:57 GMT
- Title: Say No to Freeloader: Protecting Intellectual Property of Your Deep Model
- Authors: Lianyu Wang, Meng Wang, Huazhu Fu, Daoqiang Zhang,
- Abstract summary: Compact Un-transferable Pyramid Isolation Domain (CUPI-Domain) serves as a barrier against illegal transfers from authorized to unauthorized domains.
We propose CUPI-Domain generators, which select features from both authorized and CUPI-Domain as anchors.
We provide two solutions for utilizing CUPI-Domain based on whether the unauthorized domain is known.
- Score: 52.783709712318405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model intellectual property (IP) protection has attracted growing attention as science and technology advancements stem from human intellectual labor and computational expenses. Ensuring IP safety for trainers and owners is of utmost importance, particularly in domains where ownership verification and applicability authorization are required. A notable approach to safeguarding model IP involves proactively preventing the use of well-trained models of authorized domains from unauthorized domains. In this paper, we introduce a novel Compact Un-transferable Pyramid Isolation Domain (CUPI-Domain) which serves as a barrier against illegal transfers from authorized to unauthorized domains. Drawing inspiration from human transitive inference and learning abilities, the CUPI-Domain is designed to obstruct cross-domain transfers by emphasizing the distinctive style features of the authorized domain. This emphasis leads to failure in recognizing irrelevant private style features on unauthorized domains. To this end, we propose novel CUPI-Domain generators, which select features from both authorized and CUPI-Domain as anchors. Then, we fuse the style features and semantic features of these anchors to generate labeled and style-rich CUPI-Domain. Additionally, we design external Domain-Information Memory Banks (DIMB) for storing and updating labeled pyramid features to obtain stable domain class features and domain class-wise style features. Based on the proposed whole method, the novel style and discriminative loss functions are designed to effectively enhance the distinction in style and discriminative features between authorized and unauthorized domains, respectively. Moreover, we provide two solutions for utilizing CUPI-Domain based on whether the unauthorized domain is known: target-specified CUPI-Domain and target-free CUPI-Domain.
Related papers
- Learning Domain-Aware Detection Head with Prompt Tuning [27.597165816077826]
Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain.
We propose a novel framework named Domain-Aware detection head with Prompt tuning (DA-Pro), which applies the learnable domain-adaptive prompt to generate the dynamic detection head for each domain.
arXiv Detail & Related papers (2023-06-09T07:30:10Z) - Model Barrier: A Compact Un-Transferable Isolation Domain for Model
Intellectual Property Protection [52.08301776698373]
We propose a novel approach called Compact Un-Transferable Isolation Domain (CUTI-domain)
CUTI-domain acts as a barrier to block illegal transfers from authorized to unauthorized domains.
We show that CUTI-domain can be easily implemented as a plug-and-play module with different backbones.
arXiv Detail & Related papers (2023-03-20T13:07:11Z) - Unsupervised Domain Adaptation via Style-Aware Self-intermediate Domain [52.783709712318405]
Unsupervised domain adaptation (UDA) has attracted considerable attention, which transfers knowledge from a label-rich source domain to a related but unlabeled target domain.
We propose a novel style-aware feature fusion method (SAFF) to bridge the large domain gap and transfer knowledge while alleviating the loss of class-discnative information.
arXiv Detail & Related papers (2022-09-05T10:06:03Z) - FRIDA -- Generative Feature Replay for Incremental Domain Adaptation [34.00059350161178]
We propose a novel framework called Feature based Incremental Domain Adaptation (FRIDA)
For domain alignment, we propose a simple extension of the popular domain adversarial neural network (DANN) called DANN-IB.
Experiment results on Office-Home, Office-CalTech, and DomainNet datasets confirm that FRIDA maintains superior stability-plasticity trade-off than the literature.
arXiv Detail & Related papers (2021-12-28T22:24:32Z) - Self-Adversarial Disentangling for Specific Domain Adaptation [52.1935168534351]
Domain adaptation aims to bridge the domain shifts between the source and target domains.
Recent methods typically do not consider explicit prior knowledge on a specific dimension.
arXiv Detail & Related papers (2021-08-08T02:36:45Z) - Disentanglement-based Cross-Domain Feature Augmentation for Effective
Unsupervised Domain Adaptive Person Re-identification [87.72851934197936]
Unsupervised domain adaptive (UDA) person re-identification (ReID) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain for person matching.
One challenge is how to generate target domain samples with reliable labels for training.
We propose a Disentanglement-based Cross-Domain Feature Augmentation strategy.
arXiv Detail & Related papers (2021-03-25T15:28:41Z) - Interventional Domain Adaptation [81.0692660794765]
Domain adaptation (DA) aims to transfer discriminative features learned from source domain to target domain.
Standard domain-invariance learning suffers from spurious correlations and incorrectly transfers the source-specifics.
We create counterfactual features that distinguish the domain-specifics from domain-sharable part.
arXiv Detail & Related papers (2020-11-07T09:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.