Multi-Layer Transformers Gradient Can be Approximated in Almost Linear Time
- URL: http://arxiv.org/abs/2408.13233v2
- Date: Tue, 15 Oct 2024 04:11:19 GMT
- Title: Multi-Layer Transformers Gradient Can be Approximated in Almost Linear Time
- Authors: Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, Yufa Zhou,
- Abstract summary: We show that a novel fast approximation method can calculate the gradients in almost linear time.
By improving the efficiency of gradient, we hope that this work will facilitate more effective training and deployment of long-context language models.
- Score: 17.086679273053853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The computational complexity of the self-attention mechanism in popular transformer architectures poses significant challenges for training and inference, and becomes the bottleneck for long inputs. Is it possible to significantly reduce the quadratic time complexity of computing the gradients in multi-layer transformer models? This paper proves that a novel fast approximation method can calculate the gradients in almost linear time $n^{1+o(1)}$ where $n$ is the input sequence length, while it maintains a polynomially small approximation error $1 / \mathrm{poly}(n)$ across the entire model. Our theory holds for general loss functions and when the multi-layer transformer model contains many practical sub-modules, such as residual connection, casual mask, and multi-head attention. By improving the efficiency of gradient computation, we hope that this work will facilitate more effective training and deployment of long-context language models based on our theoretical results.
Related papers
- Learning Linear Attention in Polynomial Time [115.68795790532289]
We provide the first results on learnability of single-layer Transformers with linear attention.
We show that linear attention may be viewed as a linear predictor in a suitably defined RKHS.
We show how to efficiently identify training datasets for which every empirical riskr is equivalent to the linear Transformer.
arXiv Detail & Related papers (2024-10-14T02:41:01Z) - Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Tensor Attention Training: Provably Efficient Learning of Higher-order Transformers [18.331374727331077]
Time complexity of tensor attention is a significant obstacle to its utilization in transformers.
We prove that the backward gradient of attention training can be computed in almost linear time.
arXiv Detail & Related papers (2024-05-26T02:59:13Z) - Fast Multipole Attention: A Divide-and-Conquer Attention Mechanism for Long Sequences [1.5484595752241124]
We present Fast Multipole Attention, a new attention mechanism that uses a divide-and-conquer strategy to reduce the time and memory complexity of attention for sequences of length $n$.
The hierarchical approach groups queries, keys, and values into $mathcalO( log n)$ levels of resolution, where groups at greater distances are larger in size and the weights to compute group quantities are learned.
We find empirically that the Fast Multipole Transformer performs much better than other efficient transformers in terms of memory size and accuracy.
arXiv Detail & Related papers (2023-10-18T13:40:41Z) - MB-TaylorFormer: Multi-branch Efficient Transformer Expanded by Taylor
Formula for Image Dehazing [88.61523825903998]
Transformer networks are beginning to replace pure convolutional neural networks (CNNs) in the field of computer vision.
We propose a new Transformer variant, which applies the Taylor expansion to approximate the softmax-attention and achieves linear computational complexity.
We introduce a multi-branch architecture with multi-scale patch embedding to the proposed Transformer, which embeds features by overlapping deformable convolution of different scales.
Our model, named Multi-branch Transformer expanded by Taylor formula (MB-TaylorFormer), can embed coarse to fine features more flexibly at the patch embedding stage and capture long-distance pixel interactions with limited computational cost
arXiv Detail & Related papers (2023-08-27T08:10:23Z) - Transformers Learn Shortcuts to Automata [52.015990420075944]
We find that a low-depth Transformer can represent the computations of any finite-state automaton.
We show that a Transformer with $O(log T)$ layers can exactly replicate the computation of an automaton on an input sequence of length $T$.
We further investigate the brittleness of these solutions and propose potential mitigations.
arXiv Detail & Related papers (2022-10-19T17:45:48Z) - Softmax-free Linear Transformers [90.83157268265654]
Vision transformers (ViTs) have pushed the state-of-the-art for visual perception tasks.
Existing methods are either theoretically flawed or empirically ineffective for visual recognition.
We propose a family of Softmax-Free Transformers (SOFT)
arXiv Detail & Related papers (2022-07-05T03:08:27Z) - Stable, Fast and Accurate: Kernelized Attention with Relative Positional
Encoding [63.539333383965726]
We propose a novel way to accelerate attention calculation for Transformers with relative positional encoding (RPE)
Based upon the observation that relative positional encoding forms a Toeplitz matrix, we mathematically show that kernelized attention with RPE can be calculated efficiently using Fast Fourier Transform (FFT)
arXiv Detail & Related papers (2021-06-23T17:51:26Z) - A Solution for Large Scale Nonlinear Regression with High Rank and
Degree at Constant Memory Complexity via Latent Tensor Reconstruction [0.0]
This paper proposes a novel method for learning highly nonlinear, multivariate functions from examples.
Our method takes advantage of the property that continuous functions can be approximated by bys, which in turn are representable by tensors.
For learning the models, we present an efficient-based algorithm that can be implemented in linear time.
arXiv Detail & Related papers (2020-05-04T14:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.