Re-evaluation of Face Anti-spoofing Algorithm in Post COVID-19 Era Using Mask Based Occlusion Attack
- URL: http://arxiv.org/abs/2408.13251v1
- Date: Fri, 23 Aug 2024 17:48:22 GMT
- Title: Re-evaluation of Face Anti-spoofing Algorithm in Post COVID-19 Era Using Mask Based Occlusion Attack
- Authors: Vaibhav Sundharam, Abhijit Sarkar, A. Lynn Abbott,
- Abstract summary: Face anti-spoofing algorithms play a pivotal role in the robust deployment of face recognition systems against presentation attacks.
We have used five variants of masks to cover the lower part of the face with varying coverage areas.
We have also used different variants of glasses that cover the upper part of the face.
- Score: 4.550965216676562
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Face anti-spoofing algorithms play a pivotal role in the robust deployment of face recognition systems against presentation attacks. Conventionally, full facial images are required by such systems to correctly authenticate individuals, but the widespread requirement of masks due to the current COVID-19 pandemic has introduced new challenges for these biometric authentication systems. Hence, in this work, we investigate the performance of presentation attack detection (PAD) algorithms under synthetic facial occlusions using masks and glasses. We have used five variants of masks to cover the lower part of the face with varying coverage areas (low-coverage, medium-coverage, high-coverage, round coverage), and 3D cues. We have also used different variants of glasses that cover the upper part of the face. We systematically tested the performance of four PAD algorithms under these occlusion attacks using a benchmark dataset. We have specifically looked at four different baseline PAD algorithms that focus on, texture, image quality, frame difference/motion, and abstract features through a convolutional neural network (CNN). Additionally we have introduced a new hybrid model that uses CNN and local binary pattern textures. Our experiment shows that adding the occlusions significantly degrades the performance of all of the PAD algorithms. Our results show the vulnerability of face anti-spoofing algorithms with occlusions, which could be in the usage of such algorithms in the post-pandemic era.
Related papers
- Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
We propose an Adversarial Semantic Mask Attack framework (ASMA) which can generate adversarial examples with good transferability and invisibility.
Specifically, we propose a novel adversarial semantic mask generative model, which can constrain generated perturbations in local semantic regions for good stealthiness.
arXiv Detail & Related papers (2024-06-16T10:38:11Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
Face anti-spoofing (FAS) plays a vital role in preventing face recognition systems from presentation attacks.
Existing face anti-spoofing datasets lack diversity due to the insufficient identity and insignificant variance.
We propose Dual Spoof Disentanglement Generation framework to tackle this challenge by "anti-spoofing via generation"
arXiv Detail & Related papers (2021-12-01T15:36:59Z) - Geometrically Adaptive Dictionary Attack on Face Recognition [23.712389625037442]
We propose a strategy for query-efficient black-box attacks on face recognition.
Our core idea is to create an adversarial perturbation in the UV texture map and project it onto the face in the image.
We show overwhelming performance improvement in the experiments on the LFW and CPLFW datasets.
arXiv Detail & Related papers (2021-11-08T10:26:28Z) - Efficient Masked Face Recognition Method during the COVID-19 Pandemic [4.13365552362244]
coronavirus disease (COVID-19) is an unparalleled crisis leading to a huge number of casualties and security problems.
In order to reduce the spread of coronavirus, people often wear masks to protect themselves.
This makes face recognition a very difficult task since certain parts of the face are hidden.
arXiv Detail & Related papers (2021-05-07T01:32:37Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
We have proposed a deep learning-based network termed as textitMixNet to detect presentation attacks.
The proposed algorithm utilizes state-of-the-art convolutional neural network architectures and learns the feature mapping for each attack category.
arXiv Detail & Related papers (2020-10-25T23:01:13Z) - Black-Box Face Recovery from Identity Features [61.950765357647605]
We attack the state-of-the-art face recognition system (ArcFace) to test our algorithm.
Our algorithm requires a significantly less number of queries compared to the state-of-the-art solution.
arXiv Detail & Related papers (2020-07-27T15:25:38Z) - Face Anti-Spoofing by Learning Polarization Cues in a Real-World
Scenario [50.36920272392624]
Face anti-spoofing is the key to preventing security breaches in biometric recognition applications.
Deep learning method using RGB and infrared images demands a large amount of training data for new attacks.
We present a face anti-spoofing method in a real-world scenario by automatic learning the physical characteristics in polarization images of a real face.
arXiv Detail & Related papers (2020-03-18T03:04:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.