Prompt-Softbox-Prompt: A free-text Embedding Control for Image Editing
- URL: http://arxiv.org/abs/2408.13623v2
- Date: Tue, 27 Aug 2024 01:59:59 GMT
- Title: Prompt-Softbox-Prompt: A free-text Embedding Control for Image Editing
- Authors: Yitong Yang, Yinglin Wang, Jing Wang, Tian Zhang,
- Abstract summary: The entanglement and opacity of text embeddings present significant challenges to achieving precise image editing.
We propose a novel approach for controllable image editing using a free-text embedding control method called PSP (Prompt-Softbox-Prompt)
PSP enables precise image editing by inserting or adding text embeddings within the cross-attention layers and using Softbox to define and control the specific area for semantic injection.
- Score: 10.12329842607126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-driven diffusion models have achieved remarkable success in image editing, but a crucial component in these models-text embeddings-has not been fully explored. The entanglement and opacity of text embeddings present significant challenges to achieving precise image editing. In this paper, we provide a comprehensive and in-depth analysis of text embeddings in Stable Diffusion XL, offering three key insights. First, while the 'aug_embedding' captures the full semantic content of the text, its contribution to the final image generation is relatively minor. Second, 'BOS' and 'Padding_embedding' do not contain any semantic information. Lastly, the 'EOS' holds the semantic information of all words and contains the most style features. Each word embedding plays a unique role without interfering with one another. Based on these insights, we propose a novel approach for controllable image editing using a free-text embedding control method called PSP (Prompt-Softbox-Prompt). PSP enables precise image editing by inserting or adding text embeddings within the cross-attention layers and using Softbox to define and control the specific area for semantic injection. This technique allows for obejct additions and replacements while preserving other areas of the image. Additionally, PSP can achieve style transfer by simply replacing text embeddings. Extensive experimental results show that PSP achieves significant results in tasks such as object replacement, object addition, and style transfer.
Related papers
- Latent Space Disentanglement in Diffusion Transformers Enables Precise Zero-shot Semantic Editing [4.948910649137149]
Diffusion Transformers (DiTs) have recently achieved remarkable success in text-guided image generation.
We show how multimodal information collectively forms this joint space and how they guide the semantics of the synthesized images.
We propose a simple yet effective Encode-Identify-Manipulate (EIM) framework for zero-shot fine-grained image editing.
arXiv Detail & Related papers (2024-11-12T21:34:30Z) - DragText: Rethinking Text Embedding in Point-based Image Editing [3.1923251959845214]
We show that during the progressive editing of an input image in a diffusion model, the text embedding remains constant.
We propose DragText, which optimize text embedding in conjunction with the dragging process to pair with the modified image embedding.
arXiv Detail & Related papers (2024-07-25T07:57:55Z) - Diffree: Text-Guided Shape Free Object Inpainting with Diffusion Model [81.96954332787655]
We introduce Diffree, a Text-to-Image (T2I) model that facilitates text-guided object addition with only text control.
In experiments, Diffree adds new objects with a high success rate while maintaining background consistency, spatial, and object relevance and quality.
arXiv Detail & Related papers (2024-07-24T03:58:58Z) - DM-Align: Leveraging the Power of Natural Language Instructions to Make Changes to Images [55.546024767130994]
We propose a novel model to enhance the text-based control of an image editor by explicitly reasoning about which parts of the image to alter or preserve.
It relies on word alignments between a description of the original source image and the instruction that reflects the needed updates, and the input image.
It is evaluated on a subset of the Bison dataset and a self-defined dataset dubbed Dream.
arXiv Detail & Related papers (2024-04-27T22:45:47Z) - DiffEdit: Diffusion-based semantic image editing with mask guidance [64.555930158319]
DiffEdit is a method to take advantage of text-conditioned diffusion models for the task of semantic image editing.
Our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited.
arXiv Detail & Related papers (2022-10-20T17:16:37Z) - One Model to Edit Them All: Free-Form Text-Driven Image Manipulation
with Semantic Modulations [75.81725681546071]
Free-Form CLIP aims to establish an automatic latent mapping so that one manipulation model handles free-form text prompts.
For one type of image (e.g., human portrait'), one FFCLIP model can be learned to handle free-form text prompts.
Both visual and numerical results show that FFCLIP effectively produces semantically accurate and visually realistic images.
arXiv Detail & Related papers (2022-10-14T15:06:05Z) - Prompt-to-Prompt Image Editing with Cross Attention Control [41.26939787978142]
We present an intuitive prompt-to-prompt editing framework, where the edits are controlled by text only.
We show our results over diverse images and prompts, demonstrating high-quality synthesis and fidelity to the edited prompts.
arXiv Detail & Related papers (2022-08-02T17:55:41Z) - ManiTrans: Entity-Level Text-Guided Image Manipulation via Token-wise
Semantic Alignment and Generation [97.36550187238177]
We study a novel task on text-guided image manipulation on the entity level in the real world.
The task imposes three basic requirements, (1) to edit the entity consistent with the text descriptions, (2) to preserve the text-irrelevant regions, and (3) to merge the manipulated entity into the image naturally.
Our framework incorporates a semantic alignment module to locate the image regions to be manipulated, and a semantic loss to help align the relationship between the vision and language.
arXiv Detail & Related papers (2022-04-09T09:01:19Z) - FlexIT: Towards Flexible Semantic Image Translation [59.09398209706869]
We propose FlexIT, a novel method which can take any input image and a user-defined text instruction for editing.
First, FlexIT combines the input image and text into a single target point in the CLIP multimodal embedding space.
We iteratively transform the input image toward the target point, ensuring coherence and quality with a variety of novel regularization terms.
arXiv Detail & Related papers (2022-03-09T13:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.