Transmitter Actions for Secure Integrated Sensing and Communication
- URL: http://arxiv.org/abs/2408.13635v1
- Date: Sat, 24 Aug 2024 17:37:23 GMT
- Title: Transmitter Actions for Secure Integrated Sensing and Communication
- Authors: Truman Welling, Onur Günlü, Aylin Yener,
- Abstract summary: This work models a secure integrated sensing and communication (ISAC) system as a wiretap channel with action-dependent channel states and channel output feedback.
The transmitted message is split into a common and a secure message, both of which must be reliably recovered at the legitimate receiver.
The secure message needs to be kept secret from the eavesdropper.
- Score: 23.322477552758237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work models a secure integrated sensing and communication (ISAC) system as a wiretap channel with action-dependent channel states and channel output feedback, e.g., obtained through reflections. The transmitted message is split into a common and a secure message, both of which must be reliably recovered at the legitimate receiver, while the secure message needs to be kept secret from the eavesdropper. The transmitter actions, such as beamforming vector design, affect the corresponding state at each channel use. The action sequence is modeled to depend on both the transmitted message and channel output feedback. For perfect channel output feedback, the secrecy-distortion regions are provided for physically-degraded and reversely-physically-degraded secure ISAC channels with transmitter actions. The corresponding rate regions when the entire message should be kept secret are also provided. The results are illustrated through characterizing the secrecy-distortion region of a binary example.
Related papers
- Secure Integrated Sensing and Communication Under Correlated Rayleigh Fading [35.096935840816684]
We consider a secure integrated sensing and communication (ISAC) scenario, in which a signal is transmitted through a state-dependent wiretap channel.
We establish and illustrate an achievable secrecy-distortion region for degraded secure ISAC channels under correlated Rayleigh fading.
arXiv Detail & Related papers (2024-08-30T07:16:55Z) - Secure Semantic Communication via Paired Adversarial Residual Networks [59.468221305630784]
This letter explores the positive side of the adversarial attack for the security-aware semantic communication system.
A pair of matching pluggable modules is installed: one after the semantic transmitter and the other before the semantic receiver.
The proposed scheme is capable of fooling the eavesdropper while maintaining the high-quality semantic communication.
arXiv Detail & Related papers (2024-07-02T08:32:20Z) - Physical Layer Deception with Non-Orthogonal Multiplexing [52.11755709248891]
We propose a novel framework of physical layer deception (PLD) to actively counteract wiretapping attempts.
PLD combines PLS with deception technologies to actively counteract wiretapping attempts.
We prove the validity of the PLD framework with in-depth analyses and demonstrate its superiority over conventional PLS approaches.
arXiv Detail & Related papers (2024-06-30T16:17:39Z) - Security for adversarial wiretap channels [4.383205675898942]
We analyze information-theoretically secure coding schemes which use the inverse of an extractor and an error-correcting code.
We show that this also holds for certain channel types with memory.
arXiv Detail & Related papers (2024-04-02T09:22:40Z) - Joint Sensing and Task-Oriented Communications with Image and Wireless
Data Modalities for Dynamic Spectrum Access [49.83882366499547]
This paper introduces a deep learning approach to dynamic spectrum access, leveraging the synergy of multi-modal image and spectrum data for the identification of potential transmitters.
We consider an edge device equipped with a camera that is taking images of potential objects such as vehicles that may harbor transmitters.
We propose a collaborative system wherein the edge device communicates selectively processed information to a trusted receiver acting as a fusion center.
arXiv Detail & Related papers (2023-12-21T15:26:26Z) - Age of Information in Deep Learning-Driven Task-Oriented Communications [78.84264189471936]
This paper studies the notion of age in task-oriented communications that aims to execute a task at a receiver utilizing the data at its transmitter.
The transmitter-receiver operations are modeled as an encoder-decoder pair of deep neural networks (DNNs) that are jointly trained.
arXiv Detail & Related papers (2023-01-11T04:15:51Z) - Vulnerabilities of Deep Learning-Driven Semantic Communications to
Backdoor (Trojan) Attacks [70.51799606279883]
This paper highlights vulnerabilities of deep learning-driven semantic communications to backdoor (Trojan) attacks.
Backdoor attack can effectively change the semantic information transferred for poisoned input samples to a target meaning.
Design guidelines are presented to preserve the meaning of transferred information in the presence of backdoor attacks.
arXiv Detail & Related papers (2022-12-21T17:22:27Z) - Is Semantic Communications Secure? A Tale of Multi-Domain Adversarial
Attacks [70.51799606279883]
We introduce test-time adversarial attacks on deep neural networks (DNNs) for semantic communications.
We show that it is possible to change the semantics of the transferred information even when the reconstruction loss remains low.
arXiv Detail & Related papers (2022-12-20T17:13:22Z) - Channel-Aware Adversarial Attacks Against Deep Learning-Based Wireless
Signal Classifiers [43.156901821548935]
This paper presents channel-aware adversarial attacks against deep learning-based wireless signal classifiers.
A certified defense based on randomized smoothing that augments training data with noise is introduced to make the modulation classifier robust to adversarial perturbations.
arXiv Detail & Related papers (2020-05-11T15:42:54Z) - Over-the-Air Adversarial Attacks on Deep Learning Based Modulation
Classifier over Wireless Channels [43.156901821548935]
We consider a wireless communication system that consists of a transmitter, a receiver, and an adversary.
In the meantime, the adversary makes over-the-air transmissions that are received as superimposed with the transmitter's signals.
We present how to launch a realistic evasion attack by considering channels from the adversary to the receiver.
arXiv Detail & Related papers (2020-02-05T18:45:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.