Localization and Expansion: A Decoupled Framework for Point Cloud Few-shot Semantic Segmentation
- URL: http://arxiv.org/abs/2408.13752v1
- Date: Sun, 25 Aug 2024 07:34:32 GMT
- Title: Localization and Expansion: A Decoupled Framework for Point Cloud Few-shot Semantic Segmentation
- Authors: Zhaoyang Li, Yuan Wang, Wangkai Li, Rui Sun, Tianzhu Zhang,
- Abstract summary: Point cloud few-shot semantic segmentation (PC-FSS) aims to segment targets of novel categories in a given query point cloud with only a few annotated support samples.
We propose a simple yet effective framework in the spirit of Decoupled Localization and Expansion (DLE)
DLE, including a structural localization module (SLM) and a self-expansion module (SEM), enjoys several merits.
- Score: 39.7657197805346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud few-shot semantic segmentation (PC-FSS) aims to segment targets of novel categories in a given query point cloud with only a few annotated support samples. The current top-performing prototypical learning methods employ prototypes originating from support samples to direct the classification of query points. However, the inherent fragility of point-level matching and the prevalent intra-class diversity pose great challenges to this cross-instance matching paradigm, leading to erroneous background activations or incomplete target excavation. In this work, we propose a simple yet effective framework in the spirit of Decoupled Localization and Expansion (DLE). The proposed DLE, including a structural localization module (SLM) and a self-expansion module (SEM), enjoys several merits. First, structural information is injected into the matching process through the agent-level correlation in SLM, and the confident target region can thus be precisely located. Second, more reliable intra-object similarity is harnessed in SEM to derive the complete target, and the conservative expansion strategy is introduced to reasonably constrain the expansion. Extensive experiments on two challenging benchmarks under different settings demonstrate that DLE outperforms previous state-of-the-art approaches by large margins.
Related papers
- Task Consistent Prototype Learning for Incremental Few-shot Semantic Segmentation [20.49085411104439]
Incremental Few-Shot Semantic (iFSS) tackles a task that requires a model to continually expand its segmentation capability on novel classes.
This study introduces a meta-learning-based prototype approach that encourages the model to learn how to adapt quickly while preserving previous knowledge.
Experiments on iFSS datasets built upon PASCAL and COCO benchmarks show the advanced performance of the proposed approach.
arXiv Detail & Related papers (2024-10-16T23:42:27Z) - Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
Few-shot segmentation aims to train a segmentation model that can fast adapt to a novel task for which only a few annotated images are provided.
We introduce an instance-aware data augmentation (IDA) strategy that augments the support images based on the relative sizes of the target objects.
The proposed IDA effectively increases the support set's diversity and promotes the distribution consistency between support and query images.
arXiv Detail & Related papers (2024-01-18T10:29:10Z) - P2Seg: Pointly-supervised Segmentation via Mutual Distillation [23.979786026101024]
We develop a Mutual Distillation Module (MDM) to leverage the complementary strengths of both instance position and semantic information.
Our method achieves 55.7 mAP$_50$ and 17.6 mAP on the PASCAL VOC and MS COCO datasets.
arXiv Detail & Related papers (2024-01-18T03:41:38Z) - Lidar Panoptic Segmentation and Tracking without Bells and Whistles [48.078270195629415]
We propose a detection-centric network for lidar segmentation and tracking.
One of the core components of our network is the object instance detection branch.
We evaluate our method on several 3D/4D LPS benchmarks and observe that our model establishes a new state-of-the-art among open-sourced models.
arXiv Detail & Related papers (2023-10-19T04:44:43Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality.
Existing approaches typically suffer from two major limitations.
arXiv Detail & Related papers (2023-01-17T12:42:58Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
Few-shot segmentation aims to segment unseen-class objects given only a handful of densely labeled samples.
We propose a simple yet versatile framework in the spirit of divide-and-conquer.
Our proposed approach, named divide-and-conquer proxies (DCP), allows for the development of appropriate and reliable information.
arXiv Detail & Related papers (2022-04-21T06:21:14Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
We propose a two-stage approach, termed structure-preserving activation (SPA), towards fully leveraging the structure information incorporated in convolutional features for WSOL.
In the first stage, a restricted activation module (RAM) is designed to alleviate the structure-missing issue caused by the classification network.
In the second stage, we propose a post-process approach, termed self-correlation map generating (SCG) module to obtain structure-preserving localization maps.
arXiv Detail & Related papers (2021-03-08T03:04:14Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.