FMI-TAL: Few-shot Multiple Instances Temporal Action Localization by Probability Distribution Learning and Interval Cluster Refinement
- URL: http://arxiv.org/abs/2408.13765v1
- Date: Sun, 25 Aug 2024 08:17:25 GMT
- Title: FMI-TAL: Few-shot Multiple Instances Temporal Action Localization by Probability Distribution Learning and Interval Cluster Refinement
- Authors: Fengshun Wang, Qiurui Wang, Yuting Wang,
- Abstract summary: We propose a novel solution involving a spatial-channel relation transformer with probability learning and cluster refinement.
This method can accurately identify the start and end boundaries of actions in the query video.
Our model achieves competitive performance through meticulous experimentation utilizing the benchmark datasets ActivityNet1.3 and THUMOS14.
- Score: 2.261014973523156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The present few-shot temporal action localization model can't handle the situation where videos contain multiple action instances. So the purpose of this paper is to achieve manifold action instances localization in a lengthy untrimmed query video using limited trimmed support videos. To address this challenging problem effectively, we proposed a novel solution involving a spatial-channel relation transformer with probability learning and cluster refinement. This method can accurately identify the start and end boundaries of actions in the query video, utilizing only a limited number of labeled videos. Our proposed method is adept at capturing both temporal and spatial contexts to effectively classify and precisely locate actions in videos, enabling a more comprehensive utilization of these crucial details. The selective cosine penalization algorithm is designed to suppress temporal boundaries that do not include action scene switches. The probability learning combined with the label generation algorithm alleviates the problem of action duration diversity and enhances the model's ability to handle fuzzy action boundaries. The interval cluster can help us get the final results with multiple instances situations in few-shot temporal action localization. Our model achieves competitive performance through meticulous experimentation utilizing the benchmark datasets ActivityNet1.3 and THUMOS14. Our code is readily available at https://github.com/ycwfs/FMI-TAL.
Related papers
- Proposal-based Temporal Action Localization with Point-level Supervision [29.98225940694062]
Point-level supervised temporal action localization (PTAL) aims at recognizing and localizing actions in untrimmed videos.
We propose a novel method that localizes actions by generating and evaluating action proposals of flexible duration.
Experiments show that our proposed method achieves competitive or superior performance to the state-of-the-art methods.
arXiv Detail & Related papers (2023-10-09T08:27:05Z) - Temporal Action Localization with Enhanced Instant Discriminability [66.76095239972094]
Temporal action detection (TAD) aims to detect all action boundaries and their corresponding categories in an untrimmed video.
We propose a one-stage framework named TriDet to resolve imprecise predictions of action boundaries by existing methods.
Experimental results demonstrate the robustness of TriDet and its state-of-the-art performance on multiple TAD datasets.
arXiv Detail & Related papers (2023-09-11T16:17:50Z) - Boundary-Denoising for Video Activity Localization [57.9973253014712]
We study the video activity localization problem from a denoising perspective.
Specifically, we propose an encoder-decoder model named DenoiseLoc.
Experiments show that DenoiseLoc advances %in several video activity understanding tasks.
arXiv Detail & Related papers (2023-04-06T08:48:01Z) - Video Activity Localisation with Uncertainties in Temporal Boundary [74.7263952414899]
Methods for video activity localisation over time assume implicitly that activity temporal boundaries are determined and precise.
In unscripted natural videos, different activities transit smoothly, so that it is intrinsically ambiguous to determine in labelling precisely when an activity starts and ends over time.
We introduce Elastic Moment Bounding (EMB) to accommodate flexible and adaptive activity temporal boundaries.
arXiv Detail & Related papers (2022-06-26T16:45:56Z) - Unsupervised Pre-training for Temporal Action Localization Tasks [76.01985780118422]
We propose a self-supervised pretext task, coined as Pseudo Action localization (PAL) to Unsupervisedly Pre-train feature encoders for Temporal Action localization tasks (UP-TAL)
Specifically, we first randomly select temporal regions, each of which contains multiple clips, from one video as pseudo actions and then paste them onto different temporal positions of the other two videos.
The pretext task is to align the features of pasted pseudo action regions from two synthetic videos and maximize the agreement between them.
arXiv Detail & Related papers (2022-03-25T12:13:43Z) - Towards High-Quality Temporal Action Detection with Sparse Proposals [14.923321325749196]
Temporal Action Detection aims to localize the temporal segments containing human action instances and predict the action categories.
We introduce Sparse Proposals to interact with the hierarchical features.
Experiments demonstrate the effectiveness of our method, especially under high tIoU thresholds.
arXiv Detail & Related papers (2021-09-18T06:15:19Z) - FineAction: A Fined Video Dataset for Temporal Action Localization [60.90129329728657]
FineAction is a new large-scale fined video dataset collected from existing video datasets and web videos.
This dataset contains 139K fined action instances densely annotated in almost 17K untrimmed videos spanning 106 action categories.
Experimental results reveal that our FineAction brings new challenges for action localization on fined and multi-label instances with shorter duration.
arXiv Detail & Related papers (2021-05-24T06:06:32Z) - Learning Salient Boundary Feature for Anchor-free Temporal Action
Localization [81.55295042558409]
Temporal action localization is an important yet challenging task in video understanding.
We propose the first purely anchor-free temporal localization method.
Our model includes (i) an end-to-end trainable basic predictor, (ii) a saliency-based refinement module, and (iii) several consistency constraints.
arXiv Detail & Related papers (2021-03-24T12:28:32Z) - Discovering Multi-Label Actor-Action Association in a Weakly Supervised
Setting [22.86745487695168]
We propose a baseline based on multi-instance and multi-label learning.
We propose a novel approach that uses sets of actions as representation instead of modeling individual action classes.
We evaluate the proposed approach on the challenging dataset where the proposed approach outperforms the MIML baseline and is competitive to fully supervised approaches.
arXiv Detail & Related papers (2021-01-21T11:59:47Z) - Weakly Supervised Temporal Action Localization Using Deep Metric
Learning [12.49814373580862]
We propose a weakly supervised temporal action localization method that only requires video-level action instances as supervision during training.
We jointly optimize a balanced binary cross-entropy loss and a metric loss using a standard backpropagation algorithm.
Our approach improves the current state-of-the-art result for THUMOS14 by 6.5% mAP at IoU threshold 0.5, and achieves competitive performance for ActivityNet1.2.
arXiv Detail & Related papers (2020-01-21T22:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.