Selectively Dilated Convolution for Accuracy-Preserving Sparse Pillar-based Embedded 3D Object Detection
- URL: http://arxiv.org/abs/2408.13798v1
- Date: Sun, 25 Aug 2024 10:14:43 GMT
- Title: Selectively Dilated Convolution for Accuracy-Preserving Sparse Pillar-based Embedded 3D Object Detection
- Authors: Seongmin Park, Minjae Lee, Junwon Choi, Jungwook Choi,
- Abstract summary: Dense pillar processing wastes computation since it ignores the inherent sparsity of pillars derived from scattered point cloud data.
We propose a selectively dilated (SD-Conv) convolution that evaluates the importance of encoded pillars and selectively dilates the convolution output.
This design supports the SD-Conv without significant demands in area and size, realizing superior trade-off between the speedup and model accuracy.
- Score: 15.661833433778147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pillar-based 3D object detection has gained traction in self-driving technology due to its speed and accuracy facilitated by the artificial densification of pillars for GPU-friendly processing. However, dense pillar processing fundamentally wastes computation since it ignores the inherent sparsity of pillars derived from scattered point cloud data. Motivated by recent embedded accelerators with native sparsity support, sparse pillar convolution methods like submanifold convolution (SubM-Conv) aimed to reduce these redundant computations by applying convolution only on active pillars but suffered considerable accuracy loss. Our research identifies that this accuracy loss is due to the restricted fine-grained spatial information flow (fSIF) of SubM-Conv in sparse pillar networks. To overcome this restriction, we propose a selectively dilated (SD-Conv) convolution that evaluates the importance of encoded pillars and selectively dilates the convolution output, enhancing the receptive field for critical pillars and improving object detection accuracy. To facilitate actual acceleration with this novel convolution approach, we designed SPADE+ as a cost-efficient augmentation to existing embedded sparse convolution accelerators. This design supports the SD-Conv without significant demands in area and SRAM size, realizing superior trade-off between the speedup and model accuracy. This strategic enhancement allows our method to achieve extreme pillar sparsity, leading to up to 18.1x computational savings and 16.2x speedup on the embedded accelerators, without compromising object detection accuracy.
Related papers
- FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation [52.89847760590189]
3D scene understanding is a critical yet challenging task in autonomous driving.
Recent methods leverage the range-view representation to improve processing efficiency.
We re-design the workflow for range-view-based LiDAR semantic segmentation.
arXiv Detail & Related papers (2025-02-13T12:39:26Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
We propose a novel post-training weight pruning scheme for 3D object detection.
It determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence.
This framework aims to minimize detection distortion of network output to maximally maintain detection precision.
arXiv Detail & Related papers (2024-07-02T09:33:32Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - SPADE: Sparse Pillar-based 3D Object Detection Accelerator for
Autonomous Driving [18.745798346661097]
3D object detection using point cloud (PC) data is essential for perception pipelines of autonomous driving.
PointPillars, a widely adopted bird's-eye view (BEV) encoding, aggregates 3D point cloud data into 2D pillars for fast and accurate 3D object detection.
We propose SPADE, an algorithm-hardware co-design strategy to maximize vector sparsity in pillar-based 3D object detection and accelerate vector-sparse convolution.
arXiv Detail & Related papers (2023-05-12T14:38:49Z) - An Efficient Convex Hull-based Vehicle Pose Estimation Method for 3D
LiDAR [1.9580473532948401]
Vehicle pose estimation with LiDAR is essential in the perception technology of autonomous driving.
It is challenging to achieve satisfactory pose extraction based on 3D LiDAR with the existing pose estimation methods.
We propose a novel vehicle pose estimation method based on the convex hull.
arXiv Detail & Related papers (2023-02-02T11:57:41Z) - 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object
Detection on Edge for Intelligent Transportation System [28.55894241049706]
We propose a 3D harmonic loss function to relieve the pointcloud based inconsistent predictions.
Our proposed method considerably improves the performance than benchmark models.
Our code is open-source and publicly available.
arXiv Detail & Related papers (2022-11-07T10:11:48Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Improved Pillar with Fine-grained Feature for 3D Object Detection [23.348710029787068]
3D object detection with LiDAR point clouds plays an important role in autonomous driving perception module.
Existing point-based methods are challenging to reach the speed requirements because of too many raw points.
The 2D grid-based methods, such as PointPillar, can easily achieve a stable and efficient speed based on simple 2D convolution.
arXiv Detail & Related papers (2021-10-12T14:53:14Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.