Prior Learning in Introspective VAEs
- URL: http://arxiv.org/abs/2408.13805v1
- Date: Sun, 25 Aug 2024 10:54:25 GMT
- Title: Prior Learning in Introspective VAEs
- Authors: Ioannis Athanasiadis, Shashi Nagarajan, Fredrik Lindsten, Michael Felsberg,
- Abstract summary: Variational Autoencoders (VAEs) are a popular framework for unsupervised learning and data generation.
In this study, we focus on the Soft-IntroVAE and investigate the implication of incorporating a multimodal and learnable prior into this framework.
- Score: 24.271671383057598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Autoencoders (VAEs) are a popular framework for unsupervised learning and data generation. A plethora of methods have been proposed focusing on improving VAEs, with the incorporation of adversarial objectives and the integration of prior learning mechanisms being prominent directions. When it comes to the former, an indicative instance is the recently introduced family of Introspective VAEs aiming at ensuring that a low likelihood is assigned to unrealistic samples. In this study, we focus on the Soft-IntroVAE (S-IntroVAE) and investigate the implication of incorporating a multimodal and learnable prior into this framework. Namely, we formulate the prior as a third player and show that when trained in cooperation with the decoder constitutes an effective way for prior learning, which shares the Nash Equilibrium with the vanilla S-IntroVAE. Furthermore, based on a modified formulation of the optimal ELBO in S-IntroVAE, we develop theoretically motivated regularizations, that is (i) adaptive variance clipping to stabilize training when learning the prior and (ii) responsibility regularization to discourage the formation of inactive prior mode. Finally, we perform a series of targeted experiments on a 2D density estimation benchmark and in an image generation setting comprised of the (F)-MNIST and CIFAR-10 datasets demonstrating the benefit of prior learning in S-IntroVAE in generation and representation learning.
Related papers
- Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate [118.37653302885607]
We present the Modality Integration Rate (MIR), an effective, robust, and generalized metric to indicate the multi-modal pre-training quality of Large Vision Language Models (LVLMs)
MIR is indicative about training data selection, training strategy schedule, and model architecture design to get better pre-training results.
arXiv Detail & Related papers (2024-10-09T17:59:04Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Directly Attention Loss Adjusted Prioritized Experience Replay [0.07366405857677226]
Prioritized Replay Experience (PER) enables the model to learn more about relatively important samples by artificially changing their accessed frequencies.
DALAP is proposed, which can directly quantify the changed extent of the shifted distribution through Parallel Self-Attention network.
arXiv Detail & Related papers (2023-11-24T10:14:05Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
We introduce a simple and effective method for learning VAEs with controllable biases by using an intermediary set of latent variables.
In particular, it allows us to impose desired properties like sparsity or clustering on learned representations.
We show that this, in turn, allows InteL-VAEs to learn both better generative models and representations.
arXiv Detail & Related papers (2021-06-25T16:34:05Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - PRI-VAE: Principle-of-Relevant-Information Variational Autoencoders [21.702801479284986]
We first propose a novel learning objective, termed the principle-of-relevant-information variational autoencoder (PRI-VAE)
We present an information-theoretic perspective to analyze existing VAE models by inspecting the evolution of some critical information-theoretic quantities.
Empirical results also demonstrate the effectiveness of PRI-VAE on four benchmark data sets.
arXiv Detail & Related papers (2020-07-13T16:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.