A Low-dose CT Reconstruction Network Based on TV-regularized OSEM Algorithm
- URL: http://arxiv.org/abs/2408.13832v1
- Date: Sun, 25 Aug 2024 13:31:53 GMT
- Title: A Low-dose CT Reconstruction Network Based on TV-regularized OSEM Algorithm
- Authors: Ran An, Yinghui Zhang, Xi Chen, Lemeng Li, Ke Chen, Hongwei Li,
- Abstract summary: Low-dose computed tomography (LDCT) offers significant advantages in reducing the potential harm to human bodies.
By utilizing the expectation (EM) algorithm, statistical priors could be combined with artificial priors to improve LDCT reconstruction quality.
In this paper, we propose to integrate TV regularization into the M''-step of the EM algorithm, thus achieving effective and efficient regularization.
- Score: 10.204918070701211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-dose computed tomography (LDCT) offers significant advantages in reducing the potential harm to human bodies. However, reducing the X-ray dose in CT scanning often leads to severe noise and artifacts in the reconstructed images, which might adversely affect diagnosis. By utilizing the expectation maximization (EM) algorithm, statistical priors could be combined with artificial priors to improve LDCT reconstruction quality. However, conventional EM-based regularization methods adopt an alternating solving strategy, i.e. full reconstruction followed by image-regularization, resulting in over-smoothing and slow convergence. In this paper, we propose to integrate TV regularization into the ``M''-step of the EM algorithm, thus achieving effective and efficient regularization. Besides, by employing the Chambolle-Pock (CP) algorithm and the ordered subset (OS) strategy, we propose the OSEM-CP algorithm for LDCT reconstruction, in which both reconstruction and regularization are conducted view-by-view. Furthermore, by unrolling OSEM-CP, we propose an end-to-end reconstruction neural network (NN), named OSEM-CPNN, with remarkable performance and efficiency that achieves high-quality reconstructions in just one full-view iteration. Experiments on different models and datasets demonstrate our methods' outstanding performance compared to traditional and state-of-the-art deep-learning methods.
Related papers
- AC-IND: Sparse CT reconstruction based on attenuation coefficient estimation and implicit neural distribution [12.503822675024054]
Computed tomography (CT) reconstruction plays a crucial role in industrial nondestructive testing and medical diagnosis.
Sparse view CT reconstruction aims to reconstruct high-quality CT images while only using a small number of projections.
We introduce AC-IND, a self-supervised method based on Attenuation Coefficient Estimation and Implicit Neural Distribution.
arXiv Detail & Related papers (2024-09-11T10:34:41Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Solving Low-Dose CT Reconstruction via GAN with Local Coherence [2.325977856241404]
We propose a novel approach using generative adversarial networks (GANs) with enhanced local coherence.
The proposed method can capture the local coherence of adjacent images by optical flow, which yields significant improvements in the precision and stability of the constructed images.
arXiv Detail & Related papers (2023-09-24T08:55:42Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Computed Tomography Reconstruction using Generative Energy-Based Priors [13.634603375405744]
We learn a parametric regularizer with a global receptive field by maximizing it's likelihood on reference CT data.
We apply the regularizer to limited-angle and few-view CT reconstruction problems, where it outperforms traditional reconstruction algorithms by a large margin.
arXiv Detail & Related papers (2022-03-23T18:26:23Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Self-Supervised Training For Low Dose CT Reconstruction [0.0]
This study defines a training scheme to use low-dose sinograms as their own training targets.
We apply the self-supervision principle in the projection domain where the noise is element-wise independent.
We demonstrate that our method outperforms both conventional and compressed sensing based iterative reconstruction methods.
arXiv Detail & Related papers (2020-10-25T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.