Condensed Sample-Guided Model Inversion for Knowledge Distillation
- URL: http://arxiv.org/abs/2408.13850v1
- Date: Sun, 25 Aug 2024 14:43:27 GMT
- Title: Condensed Sample-Guided Model Inversion for Knowledge Distillation
- Authors: Kuluhan Binici, Shivam Aggarwal, Cihan Acar, Nam Trung Pham, Karianto Leman, Gim Hee Lee, Tulika Mitra,
- Abstract summary: Knowledge distillation (KD) is a key element in neural network compression that allows knowledge transfer from a pre-trained teacher model to a more compact student model.
KD relies on access to the training dataset, which may not always be fully available due to privacy concerns or logistical issues related to the size of the data.
In this paper, we consider condensed samples as a form of supplementary information, and introduce a method for using them to better approximate the target data distribution.
- Score: 42.91823325342862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge distillation (KD) is a key element in neural network compression that allows knowledge transfer from a pre-trained teacher model to a more compact student model. KD relies on access to the training dataset, which may not always be fully available due to privacy concerns or logistical issues related to the size of the data. To address this, "data-free" KD methods use synthetic data, generated through model inversion, to mimic the target data distribution. However, conventional model inversion methods are not designed to utilize supplementary information from the target dataset, and thus, cannot leverage it to improve performance, even when it is available. In this paper, we consider condensed samples, as a form of supplementary information, and introduce a method for using them to better approximate the target data distribution, thereby enhancing the KD performance. Our approach is versatile, evidenced by improvements of up to 11.4% in KD accuracy across various datasets and model inversion-based methods. Importantly, it remains effective even when using as few as one condensed sample per class, and can also enhance performance in few-shot scenarios where only limited real data samples are available.
Related papers
- De-confounded Data-free Knowledge Distillation for Handling Distribution Shifts [32.1016787150064]
Data-Free Knowledge Distillation (DFKD) is a promising task to train high-performance small models to enhance actual deployment without relying on the original training data.
Existing methods commonly avoid relying on private data by utilizing synthetic or sampled data.
This paper proposes a novel perspective with causal inference to disentangle the student models from the impact of such shifts.
arXiv Detail & Related papers (2024-03-28T16:13:22Z) - Robustness-Reinforced Knowledge Distillation with Correlation Distance
and Network Pruning [3.1423836318272773]
Knowledge distillation (KD) improves the performance of efficient and lightweight models.
Most existing KD techniques rely on Kullback-Leibler (KL) divergence.
We propose a Robustness-Reinforced Knowledge Distillation (R2KD) that leverages correlation distance and network pruning.
arXiv Detail & Related papers (2023-11-23T11:34:48Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - VanillaKD: Revisit the Power of Vanilla Knowledge Distillation from
Small Scale to Large Scale [55.97546756258374]
We show that employing stronger data augmentation techniques and using larger datasets can directly decrease the gap between vanilla KD and other meticulously designed KD variants.
Our investigation of the vanilla KD and its variants in more complex schemes, including stronger training strategies and different model capacities, demonstrates that vanilla KD is elegantly simple but astonishingly effective in large-scale scenarios.
arXiv Detail & Related papers (2023-05-25T06:50:08Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - Preventing Catastrophic Forgetting and Distribution Mismatch in
Knowledge Distillation via Synthetic Data [5.064036314529226]
We propose a data-free KD framework that maintains a dynamic collection of generated samples over time.
Our experiments demonstrate that we can improve the accuracy of the student models obtained via KD when compared with state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T08:11:08Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
We propose MixKD, a data-agnostic distillation framework, to endow the resulting model with stronger generalization ability.
We prove from a theoretical perspective that under reasonable conditions MixKD gives rise to a smaller gap between the error and the empirical error.
Experiments under a limited-data setting and ablation studies further demonstrate the advantages of the proposed approach.
arXiv Detail & Related papers (2020-11-01T18:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.