TF-Attack: Transferable and Fast Adversarial Attacks on Large Language Models
- URL: http://arxiv.org/abs/2408.13985v3
- Date: Sun, 8 Sep 2024 07:44:45 GMT
- Title: TF-Attack: Transferable and Fast Adversarial Attacks on Large Language Models
- Authors: Zelin Li, Kehai Chen, Lemao Liu, Xuefeng Bai, Mingming Yang, Yang Xiang, Min Zhang,
- Abstract summary: Previous adversarial attack methods exhibit limited transferability and are notably inefficient when applied to large language models (LLMs)
We introduce a new scheme, named TF-Attack, for Transferable and Fast adversarial attacks on LLMs.
Our method consistently surpasses previous methods in transferability and delivers significant speed improvements, up to 20 times faster than earlier attack strategies.
- Score: 46.33072860649431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the great advancements in large language models (LLMs), adversarial attacks against LLMs have recently attracted increasing attention. We found that pre-existing adversarial attack methodologies exhibit limited transferability and are notably inefficient, particularly when applied to LLMs. In this paper, we analyze the core mechanisms of previous predominant adversarial attack methods, revealing that 1) the distributions of importance score differ markedly among victim models, restricting the transferability; 2) the sequential attack processes induces substantial time overheads. Based on the above two insights, we introduce a new scheme, named TF-Attack, for Transferable and Fast adversarial attacks on LLMs. TF-Attack employs an external LLM as a third-party overseer rather than the victim model to identify critical units within sentences. Moreover, TF-Attack introduces the concept of Importance Level, which allows for parallel substitutions of attacks. We conduct extensive experiments on 6 widely adopted benchmarks, evaluating the proposed method through both automatic and human metrics. Results show that our method consistently surpasses previous methods in transferability and delivers significant speed improvements, up to 20 times faster than earlier attack strategies.
Related papers
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks.
We introduce the concept of the distraction effect, where specific attention heads shift focus from the original instruction to the injected instruction.
We propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks.
arXiv Detail & Related papers (2024-11-01T04:05:59Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
Large Language Models (LLMs) are vulnerable to adversarial threats.
This paper presents an innovative defensive strategy, given white box access to an LLM.
We apply a novel methodology for analyzing distinctive activation patterns in the residual streams for attack prompt classification.
arXiv Detail & Related papers (2024-06-05T13:06:33Z) - Efficient Generation of Targeted and Transferable Adversarial Examples for Vision-Language Models Via Diffusion Models [17.958154849014576]
Adversarial attacks can be used to assess the robustness of large visual-language models (VLMs)
Previous transfer-based adversarial attacks incur high costs due to high iteration counts and complex method structure.
We propose AdvDiffVLM, which uses diffusion models to generate natural, unrestricted and targeted adversarial examples.
arXiv Detail & Related papers (2024-04-16T07:19:52Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - Explainable and Transferable Adversarial Attack for ML-Based Network Intrusion Detectors [24.1840740489442]
Machine learning (ML) has proven to be highly vulnerable to adversarial attacks.
White-box and black-box adversarial attacks of NIDS have been explored in several studies.
This paper introduces ETA, an Explainable Transfer-based Black-Box Adversarial Attack framework.
arXiv Detail & Related papers (2024-01-19T13:43:09Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - A Classification-Guided Approach for Adversarial Attacks against Neural
Machine Translation [66.58025084857556]
We introduce ACT, a novel adversarial attack framework against NMT systems guided by a classifier.
In our attack, the adversary aims to craft meaning-preserving adversarial examples whose translations belong to a different class than the original translations.
To evaluate the robustness of NMT models to our attack, we propose enhancements to existing black-box word-replacement-based attacks.
arXiv Detail & Related papers (2023-08-29T12:12:53Z) - Set-level Guidance Attack: Boosting Adversarial Transferability of
Vision-Language Pre-training Models [52.530286579915284]
We present the first study to investigate the adversarial transferability of vision-language pre-training models.
The transferability degradation is partly caused by the under-utilization of cross-modal interactions.
We propose a highly transferable Set-level Guidance Attack (SGA) that thoroughly leverages modality interactions and incorporates alignment-preserving augmentation with cross-modal guidance.
arXiv Detail & Related papers (2023-07-26T09:19:21Z) - Modeling Adversarial Attack on Pre-trained Language Models as Sequential
Decision Making [10.425483543802846]
adversarial attack task has found that pre-trained language models (PLMs) are vulnerable to small perturbations.
In this paper, we model the adversarial attack task on PLMs as a sequential decision-making problem.
We propose to use reinforcement learning to find an appropriate sequential attack path to generate adversaries, named SDM-Attack.
arXiv Detail & Related papers (2023-05-27T10:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.