NimbleD: Enhancing Self-supervised Monocular Depth Estimation with Pseudo-labels and Large-scale Video Pre-training
- URL: http://arxiv.org/abs/2408.14177v1
- Date: Mon, 26 Aug 2024 10:50:14 GMT
- Title: NimbleD: Enhancing Self-supervised Monocular Depth Estimation with Pseudo-labels and Large-scale Video Pre-training
- Authors: Albert Luginov, Muhammad Shahzad,
- Abstract summary: We introduce NimbleD, an efficient self-supervised monocular depth estimation learning framework.
This framework does not require camera intrinsics, enabling large-scale pre-training on publicly available videos.
- Score: 2.4240014793575138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce NimbleD, an efficient self-supervised monocular depth estimation learning framework that incorporates supervision from pseudo-labels generated by a large vision model. This framework does not require camera intrinsics, enabling large-scale pre-training on publicly available videos. Our straightforward yet effective learning strategy significantly enhances the performance of fast and lightweight models without introducing any overhead, allowing them to achieve performance comparable to state-of-the-art self-supervised monocular depth estimation models. This advancement is particularly beneficial for virtual and augmented reality applications requiring low latency inference. The source code, model weights, and acknowledgments are available at https://github.com/xapaxca/nimbled .
Related papers
- Unsupervised Monocular Depth Estimation Based on Hierarchical Feature-Guided Diffusion [21.939618694037108]
Unsupervised monocular depth estimation has received widespread attention because of its capability to train without ground truth.
We employ a well-converging diffusion model among generative networks for unsupervised monocular depth estimation.
This model significantly enriches the model's capacity for learning and interpreting depth distribution.
arXiv Detail & Related papers (2024-06-14T07:31:20Z) - GasMono: Geometry-Aided Self-Supervised Monocular Depth Estimation for
Indoor Scenes [47.76269541664071]
This paper tackles the challenges of self-supervised monocular depth estimation in indoor scenes caused by large rotation between frames and low texture.
We obtain coarse camera poses from monocular sequences through multi-view geometry to deal with the former.
To soften the effect of the low texture, we combine the global reasoning of vision transformers with an overfitting-aware, iterative self-distillation mechanism.
arXiv Detail & Related papers (2023-09-26T17:59:57Z) - SelfOdom: Self-supervised Egomotion and Depth Learning via
Bi-directional Coarse-to-Fine Scale Recovery [12.791122117651273]
SelfOdom is a self-supervised dual-network framework for learning pose and depth estimates from monocular images.
We introduce a novel coarse-to-fine training strategy that enables the metric scale to be recovered in a two-stage process.
Our model excels in both normal and challenging lighting conditions, including difficult night scenes.
arXiv Detail & Related papers (2022-11-16T13:36:19Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
Self-supervised monocular depth estimation has shown impressive results in static scenes.
It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions.
We introduce an external pretrained monocular depth estimation model for generating single-image depth prior.
Our model can predict sharp and accurate depth maps, even when training from monocular videos of highly-dynamic scenes.
arXiv Detail & Related papers (2022-11-07T16:17:47Z) - Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular
Depth Estimation by Integrating IMU Motion Dynamics [74.1720528573331]
Unsupervised monocular depth and ego-motion estimation has drawn extensive research attention in recent years.
We propose DynaDepth, a novel scale-aware framework that integrates information from vision and IMU motion dynamics.
We validate the effectiveness of DynaDepth by conducting extensive experiments and simulations on the KITTI and Make3D datasets.
arXiv Detail & Related papers (2022-07-11T07:50:22Z) - Occlusion-Aware Self-Supervised Monocular 6D Object Pose Estimation [88.8963330073454]
We propose a novel monocular 6D pose estimation approach by means of self-supervised learning.
We leverage current trends in noisy student training and differentiable rendering to further self-supervise the model.
Our proposed self-supervision outperforms all other methods relying on synthetic data.
arXiv Detail & Related papers (2022-03-19T15:12:06Z) - Top-KAST: Top-K Always Sparse Training [50.05611544535801]
We propose Top-KAST, a method that preserves constant sparsity throughout training.
We show that it performs comparably to or better than previous works when training models on the established ImageNet benchmark.
In addition to our ImageNet results, we also demonstrate our approach in the domain of language modeling.
arXiv Detail & Related papers (2021-06-07T11:13:05Z) - SynDistNet: Self-Supervised Monocular Fisheye Camera Distance Estimation
Synergized with Semantic Segmentation for Autonomous Driving [37.50089104051591]
State-of-the-art self-supervised learning approaches for monocular depth estimation usually suffer from scale ambiguity.
This paper introduces a novel multi-task learning strategy to improve self-supervised monocular distance estimation on fisheye and pinhole camera images.
arXiv Detail & Related papers (2020-08-10T10:52:47Z) - MiniNet: An extremely lightweight convolutional neural network for
real-time unsupervised monocular depth estimation [22.495019810166397]
We propose a new powerful network with a recurrent module to achieve the capability of a deep network.
We maintain an extremely lightweight size for real-time high performance unsupervised monocular depth prediction from video sequences.
Our new model can run at a speed of about 110 frames per second (fps) on a single GPU, 37 fps on a single CPU, and 2 fps on a Raspberry Pi 3.
arXiv Detail & Related papers (2020-06-27T12:13:22Z) - Self-supervised Video Object Segmentation [76.83567326586162]
The objective of this paper is self-supervised representation learning, with the goal of solving semi-supervised video object segmentation (a.k.a. dense tracking)
We make the following contributions: (i) we propose to improve the existing self-supervised approach, with a simple, yet more effective memory mechanism for long-term correspondence matching; (ii) by augmenting the self-supervised approach with an online adaptation module, our method successfully alleviates tracker drifts caused by spatial-temporal discontinuity; (iv) we demonstrate state-of-the-art results among the self-supervised approaches on DAVIS-2017 and YouTube
arXiv Detail & Related papers (2020-06-22T17:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.