Dense Center-Direction Regression for Object Counting and Localization with Point Supervision
- URL: http://arxiv.org/abs/2408.14457v1
- Date: Mon, 26 Aug 2024 17:49:27 GMT
- Title: Dense Center-Direction Regression for Object Counting and Localization with Point Supervision
- Authors: Domen Tabernik, Jon Muhovič, Danijel Skočaj,
- Abstract summary: We propose a novel approach termed CeDiRNet for point-supervised learning.
It uses a dense regression of directions pointing towards the nearest object centers.
We show that it outperforms the existing state-of-the-art methods.
- Score: 1.9526430269580954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object counting and localization problems are commonly addressed with point supervised learning, which allows the use of less labor-intensive point annotations. However, learning based on point annotations poses challenges due to the high imbalance between the sets of annotated and unannotated pixels, which is often treated with Gaussian smoothing of point annotations and focal loss. However, these approaches still focus on the pixels in the immediate vicinity of the point annotations and exploit the rest of the data only indirectly. In this work, we propose a novel approach termed CeDiRNet for point-supervised learning that uses a dense regression of directions pointing towards the nearest object centers, i.e. center-directions. This provides greater support for each center point arising from many surrounding pixels pointing towards the object center. We propose a formulation of center-directions that allows the problem to be split into the domain-specific dense regression of center-directions and the final localization task based on a small, lightweight, and domain-agnostic localization network that can be trained with synthetic data completely independent of the target domain. We demonstrate the performance of the proposed method on six different datasets for object counting and localization, and show that it outperforms the existing state-of-the-art methods. The code is accessible on GitHub at https://github.com/vicoslab/CeDiRNet.git.
Related papers
- CPR++: Object Localization via Single Coarse Point Supervision [55.8671776333499]
coarse point refinement (CPR) is first attempt to alleviate semantic variance from an algorithmic perspective.
CPR reduces semantic variance by selecting a semantic centre point in a neighbourhood region to replace the initial annotated point.
CPR++ can obtain scale information and further reduce the semantic variance in a global region.
arXiv Detail & Related papers (2024-01-30T17:38:48Z) - Object Localization under Single Coarse Point Supervision [107.46800858130658]
We propose a POL method using coarse point annotations, relaxing the supervision signals from accurate key points to freely spotted points.
CPR constructs point bags, selects semantic-correlated points, and produces semantic center points through multiple instance learning (MIL)
In this way, CPR defines a weakly supervised evolution procedure, which ensures training high-performance object localizer under coarse point supervision.
arXiv Detail & Related papers (2022-03-17T14:14:11Z) - Few-Shot Keypoint Detection as Task Adaptation via Latent Embeddings [17.04471874483516]
Existing approaches either compute dense keypoint embeddings in a single forward pass, or allocate their full capacity to a sparse set of points.
In this paper we explore a middle ground based on the observation that the number of relevant points at a given time are typically relatively few.
Our main contribution is a novel architecture, inspired by few-shot task adaptation, which allows a sparse-style network to condition on a keypoint embedding.
arXiv Detail & Related papers (2021-12-09T13:25:42Z) - Rethinking Counting and Localization in Crowds:A Purely Point-Based
Framework [59.578339075658995]
We propose a purely point-based framework for joint crowd counting and individual localization.
We design an intuitive solution under this framework, which is called Point to Point Network (P2PNet)
arXiv Detail & Related papers (2021-07-27T11:41:50Z) - Robust Kernel-based Feature Representation for 3D Point Cloud Analysis
via Circular Graph Convolutional Network [2.42919716430661]
We present a new local feature description method that is robust to rotation, density, and scale variations.
To improve representations of the local descriptors, we propose a global aggregation method.
Our method shows superior performances when compared to the state-of-the-art methods.
arXiv Detail & Related papers (2020-12-22T18:02:57Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
Weakly supervised localization aims at finding target object regions using only image-level supervision.
We propose to leverage pixel-level similarities across different objects for learning more accurate object locations.
Our method achieves the Top-1 localization error rate of 45.17% on the ILSVRC validation set.
arXiv Detail & Related papers (2020-08-12T04:14:11Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
We propose a novel self-training approach that enables a typical object detector trained only with point-level annotations.
During training, we utilize the available point annotations to supervise the estimation of the center points of objects.
Experimental results show that our approach significantly outperforms state-of-the-art point-supervised methods under both detection and counting tasks.
arXiv Detail & Related papers (2020-07-25T02:14:42Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
We argue that the image features extracted at a central point contain limited information for predicting distant keypoints or bounding box boundaries.
To facilitate inference, we propose to instead perform regression from a set of points placed at more advantageous positions.
We apply this proposed framework, called Point-Set Anchors, to object detection, instance segmentation, and human pose estimation.
arXiv Detail & Related papers (2020-07-06T15:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.