Grounded Multi-Hop VideoQA in Long-Form Egocentric Videos
- URL: http://arxiv.org/abs/2408.14469v1
- Date: Mon, 26 Aug 2024 17:58:47 GMT
- Title: Grounded Multi-Hop VideoQA in Long-Form Egocentric Videos
- Authors: Qirui Chen, Shangzhe Di, Weidi Xie,
- Abstract summary: This paper considers the problem of Multi-Hop Video Question Answering (MH-VidQA) in long-form egocentric videos.
We develop an automated pipeline to create multi-hop question-answering pairs with associated temporal evidence.
We then propose a novel architecture, termed as Grounding Scattered Evidence with Large Language Model (GeLM), that enhances multi-modal large language models.
- Score: 35.974750867072345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the problem of Multi-Hop Video Question Answering (MH-VidQA) in long-form egocentric videos. This task not only requires to answer visual questions, but also to localize multiple relevant time intervals within the video as visual evidences. We develop an automated pipeline to create multi-hop question-answering pairs with associated temporal evidence, enabling to construct a large-scale dataset for instruction-tuning. To monitor the progress of this new task, we further curate a high-quality benchmark, MultiHop-EgoQA, with careful manual verification and refinement. Experimental results reveal that existing multi-modal systems exhibit inadequate multi-hop grounding and reasoning abilities, resulting in unsatisfactory performance. We then propose a novel architecture, termed as Grounding Scattered Evidence with Large Language Model (GeLM), that enhances multi-modal large language models (MLLMs) by incorporating a grounding module to retrieve temporal evidence from videos using flexible grounding tokens. Trained on our visual instruction data, GeLM demonstrates improved multi-hop grounding and reasoning capabilities, setting a new baseline for this challenging task. Furthermore, when trained on third-person view videos, the same architecture also achieves state-of-the-art performance on the single-hop VidQA benchmark, ActivityNet-RTL, demonstrating its effectiveness.
Related papers
- VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining.
We construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts.
We finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions.
arXiv Detail & Related papers (2024-07-08T18:12:49Z) - The Surprising Effectiveness of Multimodal Large Language Models for Video Moment Retrieval [36.516226519328015]
Video-language tasks necessitate spatial and temporal comprehension and require significant compute.
This work demonstrates the surprising effectiveness of leveraging image-text pretrained MLLMs for moment retrieval.
We achieve a new state-of-the-art in moment retrieval on the widely used benchmarks Charades-STA, QVHighlights, and ActivityNet Captions.
arXiv Detail & Related papers (2024-06-26T06:59:09Z) - CinePile: A Long Video Question Answering Dataset and Benchmark [55.30860239555001]
We present a novel dataset and benchmark, CinePile, specifically designed for authentic long-form video understanding.
Our comprehensive dataset comprises 305,000 multiple-choice questions (MCQs), covering various visual and multimodal aspects.
We fine-tuned open-source Video-LLMs on the training split and evaluated both open-source and proprietary video-centric LLMs on the test split of our dataset.
arXiv Detail & Related papers (2024-05-14T17:59:02Z) - MoVQA: A Benchmark of Versatile Question-Answering for Long-Form Movie
Understanding [69.04413943858584]
We introduce MoVQA, a long-form movie question-answering dataset.
We also benchmark to assess the diverse cognitive capabilities of multimodal systems.
arXiv Detail & Related papers (2023-12-08T03:33:38Z) - MVBench: A Comprehensive Multi-modal Video Understanding Benchmark [63.14000659130736]
We introduce a comprehensive Multi-modal Video understanding Benchmark, namely MVBench.
We first introduce a novel static-to-dynamic method to define these temporal-related tasks.
Then, guided by the task definition, we automatically convert public video annotations into multiple-choice QA to evaluate each task.
arXiv Detail & Related papers (2023-11-28T17:59:04Z) - MuLTI: Efficient Video-and-Language Understanding with Text-Guided
MultiWay-Sampler and Multiple Choice Modeling [7.737755720567113]
This paper proposes MuLTI, a highly accurate and efficient video-and-language understanding model.
We design a Text-Guided MultiWay-Sampler based on adapt-pooling residual mapping and self-attention modules.
We also propose a new pretraining task named Multiple Choice Modeling.
arXiv Detail & Related papers (2023-03-10T05:22:39Z) - MINOTAUR: Multi-task Video Grounding From Multimodal Queries [70.08973664126873]
We present a single, unified model for tackling query-based video understanding in long-form videos.
In particular, our model can address all three tasks of the Ego4D Episodic Memory benchmark.
arXiv Detail & Related papers (2023-02-16T04:00:03Z) - MIST: Multi-modal Iterative Spatial-Temporal Transformer for Long-form
Video Question Answering [73.61182342844639]
We introduce a new model named Multi-modal Iterative Spatial-temporal Transformer (MIST) to better adapt pre-trained models for long-form VideoQA.
MIST decomposes traditional dense spatial-temporal self-attention into cascaded segment and region selection modules.
Visual concepts at different granularities are then processed efficiently through an attention module.
arXiv Detail & Related papers (2022-12-19T15:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.