Estimating Uncertainty with Implicit Quantile Network
- URL: http://arxiv.org/abs/2408.14525v1
- Date: Mon, 26 Aug 2024 13:33:14 GMT
- Title: Estimating Uncertainty with Implicit Quantile Network
- Authors: Yi Hung Lim,
- Abstract summary: Uncertainty quantification is an important part of many performance critical applications.
This paper provides a simple alternative to existing approaches such as ensemble learning and bayesian neural networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification is an important part of many performance critical applications. This paper provides a simple alternative to existing approaches such as ensemble learning and bayesian neural networks. By directly modeling the loss distribution with an Implicit Quantile Network, we get an estimate of how uncertain the model is of its predictions. For experiments with MNIST and CIFAR datasets, the mean of the estimated loss distribution is 2x higher for incorrect predictions. When data with high estimated uncertainty is removed from the test dataset, the accuracy of the model goes up as much as 10%. This method is simple to implement while offering important information to applications where the user has to know when the model could be wrong (e.g. deep learning for healthcare).
Related papers
- Extracting Usable Predictions from Quantized Networks through
Uncertainty Quantification for OOD Detection [0.0]
OOD detection has become more pertinent with advances in network design and increased task complexity.
We introduce an Uncertainty Quantification(UQ) technique to quantify the uncertainty in the predictions from a pre-trained vision model.
We observe that our technique saves up to 80% of ignored samples from being misclassified.
arXiv Detail & Related papers (2024-03-02T03:03:29Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
One of the most common problems preventing the application of prediction models in the real world is lack of generalization.
We propose novel methods that estimate uncertainty of particular predictions generated by a neural network classification model.
The proposed methods infer the confidence of a particular prediction based on the distribution of the logit values corresponding to this prediction.
arXiv Detail & Related papers (2022-10-14T12:32:50Z) - Two-stage Modeling for Prediction with Confidence [0.0]
It is difficult to generalize the performance of neural networks under the condition of distributional shift.
We propose a novel two-stage model for the potential distribution shift problem.
We show that our model offers reliable predictions for the vast majority of datasets.
arXiv Detail & Related papers (2022-09-19T08:48:07Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - A Novel Regression Loss for Non-Parametric Uncertainty Optimization [7.766663822644739]
Quantification of uncertainty is one of the most promising approaches to establish safe machine learning.
One of the most commonly used approaches so far is Monte Carlo dropout, which is computationally cheap and easy to apply in practice.
We propose a new objective, referred to as second-moment loss ( UCI), to address this issue.
arXiv Detail & Related papers (2021-01-07T19:12:06Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.