Bridging the Gap: Unpacking the Hidden Challenges in Knowledge Distillation for Online Ranking Systems
- URL: http://arxiv.org/abs/2408.14678v1
- Date: Mon, 26 Aug 2024 23:01:48 GMT
- Title: Bridging the Gap: Unpacking the Hidden Challenges in Knowledge Distillation for Online Ranking Systems
- Authors: Nikhil Khani, Shuo Yang, Aniruddh Nath, Yang Liu, Pendo Abbo, Li Wei, Shawn Andrews, Maciej Kula, Jarrod Kahn, Zhe Zhao, Lichan Hong, Ed Chi,
- Abstract summary: Knowledge Distillation (KD) is a powerful approach for compressing a large model into a smaller, more efficient model.
We present a robust KD system developed and rigorously evaluated on multiple large-scale personalized video recommendation systems within Google.
- Score: 13.437632008276552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge Distillation (KD) is a powerful approach for compressing a large model into a smaller, more efficient model, particularly beneficial for latency-sensitive applications like recommender systems. However, current KD research predominantly focuses on Computer Vision (CV) and NLP tasks, overlooking unique data characteristics and challenges inherent to recommender systems. This paper addresses these overlooked challenges, specifically: (1) mitigating data distribution shifts between teacher and student models, (2) efficiently identifying optimal teacher configurations within time and budgetary constraints, and (3) enabling computationally efficient and rapid sharing of teacher labels to support multiple students. We present a robust KD system developed and rigorously evaluated on multiple large-scale personalized video recommendation systems within Google. Our live experiment results demonstrate significant improvements in student model performance while ensuring consistent and reliable generation of high quality teacher labels from a continuous data stream of data.
Related papers
- Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling [81.00825302340984]
We introduce Speculative Knowledge Distillation (SKD) to generate high-quality training data on-the-fly.
In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution.
We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following.
arXiv Detail & Related papers (2024-10-15T06:51:25Z) - Relative Difficulty Distillation for Semantic Segmentation [54.76143187709987]
We propose a pixel-level KD paradigm for semantic segmentation named Relative Difficulty Distillation (RDD)
RDD allows the teacher network to provide effective guidance on learning focus without additional optimization goals.
Our research showcases that RDD can integrate with existing KD methods to improve their upper performance bound.
arXiv Detail & Related papers (2024-07-04T08:08:25Z) - Continual Collaborative Distillation for Recommender System [20.10443406772368]
We propose a systematic approach to operating the teacher-student KD in a non-stationary data stream.
We propose Continual Collaborative Distillation (CCD) framework, where both the teacher and the student continually and collaboratively evolve along the data stream.
We validate the effectiveness of CCD through extensive quantitative, ablative, and exploratory experiments on two real-world datasets.
arXiv Detail & Related papers (2024-05-29T12:43:39Z) - DistiLLM: Towards Streamlined Distillation for Large Language Models [53.46759297929675]
DistiLLM is a more effective and efficient KD framework for auto-regressive language models.
DisiLLM comprises two components: (1) a novel skew Kullback-Leibler divergence loss, where we unveil and leverage its theoretical properties, and (2) an adaptive off-policy approach designed to enhance the efficiency in utilizing student-generated outputs.
arXiv Detail & Related papers (2024-02-06T11:10:35Z) - Improving Knowledge Distillation via Regularizing Feature Norm and
Direction [16.98806338782858]
Knowledge distillation (KD) exploits a large well-trained model (i.e., teacher) to train a small student model on the same dataset for the same task.
Treating teacher features as knowledge, prevailing methods of knowledge distillation train student by aligning its features with the teacher's, e.g., by minimizing the KL-divergence between their logits or L2 distance between their intermediate features.
While it is natural to believe that better alignment of student features to the teacher better distills teacher knowledge, simply forcing this alignment does not directly contribute to the student's performance, e.g.
arXiv Detail & Related papers (2023-05-26T15:05:19Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - CES-KD: Curriculum-based Expert Selection for Guided Knowledge
Distillation [4.182345120164705]
This paper proposes a new technique called Curriculum Expert Selection for Knowledge Distillation (CES-KD)
CES-KD is built upon the hypothesis that a student network should be guided gradually using stratified teaching curriculum.
Specifically, our method is a gradual TA-based KD technique that selects a single teacher per input image based on a curriculum driven by the difficulty in classifying the image.
arXiv Detail & Related papers (2022-09-15T21:02:57Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
We propose the dynamic prior knowledge (DPK), which integrates part of teacher's features as the prior knowledge before the feature distillation.
Our DPK makes the performance of the student model positively correlated with that of the teacher model, which means that we can further boost the accuracy of students by applying larger teachers.
arXiv Detail & Related papers (2022-06-13T11:52:13Z) - How and When Adversarial Robustness Transfers in Knowledge Distillation? [137.11016173468457]
This paper studies how and when the adversarial robustness can be transferred from a teacher model to a student model in Knowledge distillation (KD)
We show that standard KD training fails to preserve adversarial robustness, and we propose KD with input gradient alignment (KDIGA) for remedy.
Under certain assumptions, we prove that the student model using our proposed KDIGA can achieve at least the same certified robustness as the teacher model.
arXiv Detail & Related papers (2021-10-22T21:30:53Z) - Application of Deep Self-Attention in Knowledge Tracing [2.5852720579998336]
This paper proposed Deep Self-Attentive Knowledge Tracing (DSAKT) based on the data of PTA, an online assessment system used by students in many universities in China.
Experimentation on the data of PTA shows that DSAKT outperforms the other models for knowledge tracing an improvement of 2.1% on average.
arXiv Detail & Related papers (2021-05-17T14:45:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.