Federated User Preference Modeling for Privacy-Preserving Cross-Domain Recommendation
- URL: http://arxiv.org/abs/2408.14689v1
- Date: Mon, 26 Aug 2024 23:29:03 GMT
- Title: Federated User Preference Modeling for Privacy-Preserving Cross-Domain Recommendation
- Authors: Li Wang, Shoujin Wang, Quangui Zhang, Qiang Wu, Min Xu,
- Abstract summary: Cross-domain recommendation (CDR) aims to address the data-sparsity problem by transferring knowledge across domains.
Recent privacy-preserving CDR models have been proposed to solve this problem.
We propose a novel Federated User Preference Modeling (FUPM) framework.
- Score: 18.0700584280752
- License:
- Abstract: Cross-domain recommendation (CDR) aims to address the data-sparsity problem by transferring knowledge across domains. Existing CDR methods generally assume that the user-item interaction data is shareable between domains, which leads to privacy leakage. Recently, some privacy-preserving CDR (PPCDR) models have been proposed to solve this problem. However, they primarily transfer simple representations learned only from user-item interaction histories, overlooking other useful side information, leading to inaccurate user preferences. Additionally, they transfer differentially private user-item interaction matrices or embeddings across domains to protect privacy. However, these methods offer limited privacy protection, as attackers may exploit external information to infer the original data. To address these challenges, we propose a novel Federated User Preference Modeling (FUPM) framework. In FUPM, first, a novel comprehensive preference exploration module is proposed to learn users' comprehensive preferences from both interaction data and additional data including review texts and potentially positive items. Next, a private preference transfer module is designed to first learn differentially private local and global prototypes, and then privately transfer the global prototypes using a federated learning strategy. These prototypes are generalized representations of user groups, making it difficult for attackers to infer individual information. Extensive experiments on four CDR tasks conducted on the Amazon and Douban datasets validate the superiority of FUPM over SOTA baselines. Code is available at https://github.com/Lili1013/FUPM.
Related papers
- Federated Prototype-based Contrastive Learning for Privacy-Preserving Cross-domain Recommendation [12.431227076940704]
Cross-domain recommendation (CDR) aims to improve recommendation accuracy in sparse domains by transferring knowledge from data-rich domains.
Existing CDR methods often assume the availability of user-item interaction data across domains, overlooking user privacy concerns.
We propose a Federated Prototype-based Contrastive Learning (CL) method for Privacy-Preserving CDR, named FedPCL-CDR.
arXiv Detail & Related papers (2024-09-05T06:59:56Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF) is an emerging field focused on developing a new recommendation framework with preserving privacy.
This paper proposes a novel personalized FedCF method by preserving users' personalized information into a latent variable and a neural model simultaneously.
To effectively train the proposed framework, we model the problem as a specialized Variational AutoEncoder (VAE) task by integrating user interaction vector reconstruction with missing value prediction.
arXiv Detail & Related papers (2024-08-16T05:49:14Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - A Privacy-Preserving Framework with Multi-Modal Data for Cross-Domain
Recommendation [13.33679167416221]
Cross-domain recommendation (CDR) aims to enhance recommendation accuracy in a target domain with sparse data.
We propose a Privacy-Preserving Framework with Multi-Modal Data for Cross-Domain Recommendation, called P2M2-CDR.
arXiv Detail & Related papers (2024-03-06T10:40:08Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - FedSIS: Federated Split Learning with Intermediate Representation
Sampling for Privacy-preserving Generalized Face Presentation Attack
Detection [4.1897081000881045]
Lack of generalization to unseen domains/attacks is the Achilles heel of most face presentation attack detection (FacePAD) algorithms.
In this work, a novel framework called Federated Split learning with Intermediate representation Sampling (FedSIS) is introduced for privacy-preserving domain generalization.
arXiv Detail & Related papers (2023-08-20T11:49:12Z) - RecUP-FL: Reconciling Utility and Privacy in Federated Learning via
User-configurable Privacy Defense [9.806681555309519]
Federated learning (FL) allows clients to collaboratively train a model without sharing their private data.
Recent studies have shown that private information can still be leaked through shared gradients.
We propose a user-configurable privacy defense, RecUP-FL, that can better focus on the user-specified sensitive attributes.
arXiv Detail & Related papers (2023-04-11T10:59:45Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
We present TIPRDC, a task-independent privacy-respecting data crowdsourcing framework with anonymized intermediate representation.
The goal of this framework is to learn a feature extractor that can hide the privacy information from the intermediate representations; while maximally retaining the original information embedded in the raw data for the data collector to accomplish unknown learning tasks.
arXiv Detail & Related papers (2020-05-23T06:21:26Z) - Federating Recommendations Using Differentially Private Prototypes [16.29544153550663]
We propose a new federated approach to learning global and local private models for recommendation without collecting raw data.
By requiring only two rounds of communication, we both reduce the communication costs and avoid the excessive privacy loss.
We show local adaptation of the global model allows our method to outperform centralized matrix-factorization-based recommender system models.
arXiv Detail & Related papers (2020-03-01T22:21:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.