PPVF: An Efficient Privacy-Preserving Online Video Fetching Framework with Correlated Differential Privacy
- URL: http://arxiv.org/abs/2408.14735v1
- Date: Tue, 27 Aug 2024 02:03:36 GMT
- Title: PPVF: An Efficient Privacy-Preserving Online Video Fetching Framework with Correlated Differential Privacy
- Authors: Xianzhi Zhang, Yipeng Zhou, Di Wu, Quan Z. Sheng, Miao Hu, Linchang Xiao,
- Abstract summary: We introduce a novel Privacy-Preserving Video Fetching framework to preserve user request privacy while maintaining high-quality online video services.
We use trusted edge devices to pre-fetch and cache videos, ensuring the privacy of users' requests while optimizing the efficiency of edge caching.
The results demonstrate that PPVF effectively safeguards user request privacy while upholding high video caching performance.
- Score: 24.407782529925615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online video streaming has evolved into an integral component of the contemporary Internet landscape. Yet, the disclosure of user requests presents formidable privacy challenges. As users stream their preferred online videos, their requests are automatically seized by video content providers, potentially leaking users' privacy. Unfortunately, current protection methods are not well-suited to preserving user request privacy from content providers while maintaining high-quality online video services. To tackle this challenge, we introduce a novel Privacy-Preserving Video Fetching (PPVF) framework, which utilizes trusted edge devices to pre-fetch and cache videos, ensuring the privacy of users' requests while optimizing the efficiency of edge caching. More specifically, we design PPVF with three core components: (1) \textit{Online privacy budget scheduler}, which employs a theoretically guaranteed online algorithm to select non-requested videos as candidates with assigned privacy budgets. Alternative videos are chosen by an online algorithm that is theoretically guaranteed to consider both video utilities and available privacy budgets. (2) \textit{Noisy video request generator}, which generates redundant video requests (in addition to original ones) utilizing correlated differential privacy to obfuscate request privacy. (3) \textit{Online video utility predictor}, which leverages federated learning to collaboratively evaluate video utility in an online fashion, aiding in video selection in (1) and noise generation in (2). Finally, we conduct extensive experiments using real-world video request traces from Tencent Video. The results demonstrate that PPVF effectively safeguards user request privacy while upholding high video caching performance.
Related papers
- PV-VTT: A Privacy-Centric Dataset for Mission-Specific Anomaly Detection and Natural Language Interpretation [5.0923114224599555]
We present PV-VTT (Privacy Violation Video To Text), a unique multimodal dataset aimed at identifying privacy violations.
PV-VTT provides detailed annotations for both video and text in scenarios.
This privacy-focused approach allows researchers to use the dataset while protecting participant confidentiality.
arXiv Detail & Related papers (2024-10-30T01:02:20Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - Sync from the Sea: Retrieving Alignable Videos from Large-Scale Datasets [62.280729345770936]
We introduce the task of Alignable Video Retrieval (AVR)
Given a query video, our approach can identify well-alignable videos from a large collection of clips and temporally synchronize them to the query.
Our experiments on 3 datasets, including large-scale Kinetics700, demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-02T20:00:49Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - STPrivacy: Spatio-Temporal Tubelet Sparsification and Anonymization for
Privacy-preserving Action Recognition [28.002605566359676]
We present a PPAR paradigm, i.e. spatial, performing privacy preservation from both temporal perspectives, and propose a STPrivacy framework.
For first time, our STPrivacy applies vision Transformers to PPAR and regards video as sequence of leakage-temporal tubelets.
Because there is no large-scale benchmarks, we annotate five privacy attributes for two of the most popular action recognition datasets.
arXiv Detail & Related papers (2023-01-08T14:07:54Z) - PrivHAR: Recognizing Human Actions From Privacy-preserving Lens [58.23806385216332]
We propose an optimizing framework to provide robust visual privacy protection along the human action recognition pipeline.
Our framework parameterizes the camera lens to successfully degrade the quality of the videos to inhibit privacy attributes and protect against adversarial attacks.
arXiv Detail & Related papers (2022-06-08T13:43:29Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
Existing approaches for mitigating privacy leakage in action recognition require privacy labels along with the action labels from the video dataset.
Recent developments of self-supervised learning (SSL) have unleashed the untapped potential of the unlabeled data.
We present a novel training framework which removes privacy information from input video in a self-supervised manner without requiring privacy labels.
arXiv Detail & Related papers (2022-03-29T02:56:40Z) - VPN: Video Provenance Network for Robust Content Attribution [72.12494245048504]
We present VPN - a content attribution method for recovering provenance information from videos shared online.
We learn a robust search embedding for matching such video, using full-length or truncated video queries.
Once matched against a trusted database of video clips, associated information on the provenance of the clip is presented to the user.
arXiv Detail & Related papers (2021-09-21T09:07:05Z) - Robust Privacy-Preserving Motion Detection and Object Tracking in
Encrypted Streaming Video [39.453548972987015]
We propose an efficient and robust privacy-preserving motion detection and multiple object tracking scheme for encrypted surveillance video bitstreams.
Our scheme achieves the best detection and tracking performance compared with existing works in the encrypted and compressed domain.
Our scheme can be effectively used in complex surveillance scenarios with different challenges, such as camera movement/jitter, dynamic background, and shadows.
arXiv Detail & Related papers (2021-08-30T11:58:19Z) - Privid: Practical, Privacy-Preserving Video Analytics Queries [6.7897713298300335]
This paper presents a new notion of differential privacy (DP) for video analytics, $(rho,K,epsilon)$-event-duration privacy.
We show that Privid achieves accuracies within 79-99% of a non-private system.
arXiv Detail & Related papers (2021-06-22T22:25:08Z) - Privacy-Preserving Video Classification with Convolutional Neural
Networks [8.51142156817993]
We propose a privacy-preserving implementation of single-frame method based video classification with convolutional neural networks.
We evaluate our proposed solution in an application for private human emotion recognition.
arXiv Detail & Related papers (2021-02-06T05:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.