GSIFN: A Graph-Structured and Interlaced-Masked Multimodal Transformer-based Fusion Network for Multimodal Sentiment Analysis
- URL: http://arxiv.org/abs/2408.14809v3
- Date: Sat, 21 Sep 2024 07:38:36 GMT
- Title: GSIFN: A Graph-Structured and Interlaced-Masked Multimodal Transformer-based Fusion Network for Multimodal Sentiment Analysis
- Authors: Yijie Jin,
- Abstract summary: Multimodal Sentiment Analysis (MSA) leverages multiple data modals to analyze human sentiment.
Existing MSA models generally employ cutting-edge multimodal fusion and representation learning-based methods to promote MSA capability.
Our proposed GSIFN incorporates two main components to solve these problems: (i) a graph-structured and interlaced-masked multimodal Transformer.
It adopts the Interlaced Mask mechanism to construct robust multimodal graph embedding, achieve all-modal-in-one Transformer-based fusion, and greatly reduce the computational overhead.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Sentiment Analysis (MSA) leverages multiple data modals to analyze human sentiment. Existing MSA models generally employ cutting-edge multimodal fusion and representation learning-based methods to promote MSA capability. However, there are two key challenges: (i) in existing multimodal fusion methods, the decoupling of modal combinations and tremendous parameter redundancy, lead to insufficient fusion performance and efficiency; (ii) a challenging trade-off exists between representation capability and computational overhead in unimodal feature extractors and encoders. Our proposed GSIFN incorporates two main components to solve these problems: (i) a graph-structured and interlaced-masked multimodal Transformer. It adopts the Interlaced Mask mechanism to construct robust multimodal graph embedding, achieve all-modal-in-one Transformer-based fusion, and greatly reduce the computational overhead; (ii) a self-supervised learning framework with low computational overhead and high performance, which utilizes a parallelized LSTM with matrix memory to enhance non-verbal modal features for unimodal label generation. Evaluated on the MSA datasets CMU-MOSI, CMU-MOSEI, and CH-SIMS, GSIFN demonstrates superior performance with significantly lower computational overhead compared with previous state-of-the-art models.
Related papers
- Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
Multitask learning (MTL) leverages task-relatedness to enhance performance.
We employ high-order tensors, with each mode corresponding to a task index, to naturally represent tasks referenced by multiple indices.
We propose a general framework of low-rank MTL methods with tensorized support vector machines (SVMs) and least square support vector machines (LSSVMs)
arXiv Detail & Related papers (2023-08-30T14:28:26Z) - FM-ViT: Flexible Modal Vision Transformers for Face Anti-Spoofing [88.6654909354382]
We present a pure transformer-based framework, dubbed the Flexible Modal Vision Transformer (FM-ViT) for face anti-spoofing.
FM-ViT can flexibly target any single-modal (i.e., RGB) attack scenarios with the help of available multi-modal data.
Experiments demonstrate that the single model trained based on FM-ViT can not only flexibly evaluate different modal samples, but also outperforms existing single-modal frameworks by a large margin.
arXiv Detail & Related papers (2023-05-05T04:28:48Z) - MEAformer: Multi-modal Entity Alignment Transformer for Meta Modality
Hybrid [40.745848169903105]
Multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs.
MMEA algorithms rely on KG-level modality fusion strategies for multi-modal entity representation.
This paper introduces MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid.
arXiv Detail & Related papers (2022-12-29T20:49:58Z) - Efficient Multimodal Transformer with Dual-Level Feature Restoration for
Robust Multimodal Sentiment Analysis [47.29528724322795]
Multimodal Sentiment Analysis (MSA) has attracted increasing attention recently.
Despite significant progress, there are still two major challenges on the way towards robust MSA.
We propose a generic and unified framework to address them, named Efficient Multimodal Transformer with Dual-Level Feature Restoration (EMT-DLFR)
arXiv Detail & Related papers (2022-08-16T08:02:30Z) - A Study of Syntactic Multi-Modality in Non-Autoregressive Machine
Translation [144.55713938260828]
It is difficult for non-autoregressive translation models to capture the multi-modal distribution of target translations.
We decompose it into short- and long-range syntactic multi-modalities and evaluate several recent NAT algorithms with advanced loss functions.
We design a new loss function to better handle the complicated syntactic multi-modality in real-world datasets.
arXiv Detail & Related papers (2022-07-09T06:48:10Z) - Sparse Fusion for Multimodal Transformers [7.98117428941095]
We present Sparse Fusion Transformers (SFT), a novel multimodal fusion method for transformers.
Key to our idea is a sparse-pooling block that reduces unimodal token sets prior to cross-modality modeling.
State-of-the-art performance is obtained on multiple benchmarks under similar experiment conditions, while reporting up to six-fold reduction in computational cost and memory requirements.
arXiv Detail & Related papers (2021-11-23T16:43:49Z) - Improving Multimodal Fusion with Hierarchical Mutual Information
Maximization for Multimodal Sentiment Analysis [16.32509144501822]
We propose a framework named MultiModal InfoMax (MMIM), which hierarchically maximizes the Mutual Information (MI) in unimodal input pairs.
The framework is jointly trained with the main task (MSA) to improve the performance of the downstream MSA task.
arXiv Detail & Related papers (2021-09-01T14:45:16Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.