Adversarial Manhole: Challenging Monocular Depth Estimation and Semantic Segmentation Models with Patch Attack
- URL: http://arxiv.org/abs/2408.14879v1
- Date: Tue, 27 Aug 2024 08:48:21 GMT
- Title: Adversarial Manhole: Challenging Monocular Depth Estimation and Semantic Segmentation Models with Patch Attack
- Authors: Naufal Suryanto, Andro Aprila Adiputra, Ahmada Yusril Kadiptya, Yongsu Kim, Howon Kim,
- Abstract summary: This paper presents a novel adversarial attack using practical patches that mimic manhole covers to deceive MDE and SS models.
We use Depth Planar Mapping to precisely position these patches on road surfaces, enhancing the attack's effectiveness.
Our experiments show that these adversarial patches cause a 43% relative error in MDE and achieve a 96% attack success rate in SS.
- Score: 1.4272256806865107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular depth estimation (MDE) and semantic segmentation (SS) are crucial for the navigation and environmental interpretation of many autonomous driving systems. However, their vulnerability to practical adversarial attacks is a significant concern. This paper presents a novel adversarial attack using practical patches that mimic manhole covers to deceive MDE and SS models. The goal is to cause these systems to misinterpret scenes, leading to false detections of near obstacles or non-passable objects. We use Depth Planar Mapping to precisely position these patches on road surfaces, enhancing the attack's effectiveness. Our experiments show that these adversarial patches cause a 43% relative error in MDE and achieve a 96% attack success rate in SS. These patches create affected error regions over twice their size in MDE and approximately equal to their size in SS. Our studies also confirm the patch's effectiveness in physical simulations, the adaptability of the patches across different target models, and the effectiveness of our proposed modules, highlighting their practical implications.
Related papers
- Physical Adversarial Attack on Monocular Depth Estimation via Shape-Varying Patches [8.544722337960359]
We propose a physics-based adversarial attack on monocular depth estimation, employing a framework called Attack with Shape-Varying Patches (ASP)
We introduce various mask shapes, including quadrilateral, rectangular, and circular masks, to enhance the flexibility and efficiency of the attack.
Experimental results demonstrate that our attack method generates an average depth error of 18 meters on the target car with a patch area of 1/9, affecting over 98% of the target area.
arXiv Detail & Related papers (2024-07-24T14:29:05Z) - SSAP: A Shape-Sensitive Adversarial Patch for Comprehensive Disruption of Monocular Depth Estimation in Autonomous Navigation Applications [7.631454773779265]
We introduce SSAP (Shape-Sensitive Adrial Patch), a novel approach designed to disrupt monocular depth estimation (MDE) in autonomous navigation applications.
Our patch is crafted to selectively undermine MDE in two distinct ways: by distorting estimated distances or by creating the illusion of an object disappearing from the system's perspective.
Our approach induces a mean depth estimation error surpassing 0.5, impacting up to 99% of the targeted region for CNN-based MDE models.
arXiv Detail & Related papers (2024-03-18T07:01:21Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
Adversarial attacks can introduce subtle perturbations to input data.
Recent attack methods can achieve a relatively high attack success rate (ASR)
We propose a Distribution-Aware LoRA-based Adversarial Attack (DALA) method.
arXiv Detail & Related papers (2023-11-14T23:43:47Z) - Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
We advocate MDP, a lightweight, pluggable, and effective defense for PLMs as few-shot learners.
We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness.
arXiv Detail & Related papers (2023-09-23T04:41:55Z) - SAAM: Stealthy Adversarial Attack on Monocular Depth Estimation [5.476763798688862]
We propose a novel underlineStealthy underlineAdversarial underlineAttacks on underlineMDE (SAAM)
It compromises MDE by either corrupting the estimated distance or causing an object to seamlessly blend into its surroundings.
We believe that this work sheds light on the threat of adversarial attacks in the context of MDE on edge devices.
arXiv Detail & Related papers (2023-08-06T13:29:42Z) - APARATE: Adaptive Adversarial Patch for CNN-based Monocular Depth Estimation for Autonomous Navigation [8.187375378049353]
monocular depth estimation (MDE) has experienced significant advancements in performance, largely attributed to the integration of innovative architectures, i.e., convolutional neural networks (CNNs) and Transformers.
The susceptibility of these models to adversarial attacks has emerged as a noteworthy concern, especially in domains where safety and security are paramount.
This concern holds particular weight for MDE due to its critical role in applications like autonomous driving and robotic navigation, where accurate scene understanding is pivotal.
arXiv Detail & Related papers (2023-03-02T15:31:53Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
We study a novel attack paradigm, which modifies model parameters in the deployment stage.
Considering the effectiveness and stealthiness goals, we provide a general formulation to perform the bit-flip based weight attack.
We present two cases of the general formulation with different malicious purposes, i.e., single sample attack (SSA) and triggered samples attack (TSA)
arXiv Detail & Related papers (2022-07-25T03:24:58Z) - Physical Attack on Monocular Depth Estimation with Optimal Adversarial
Patches [18.58673451901394]
We develop an attack against learning-based Monocular Depth Estimation (MDE)
We balance the stealth and effectiveness of our attack with object-oriented adversarial design, sensitive region localization, and natural style camouflage.
Experimental results show that our method can generate stealthy, effective, and robust adversarial patches for different target objects and models.
arXiv Detail & Related papers (2022-07-11T08:59:09Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
The existence of real-world adversarial examples (commonly in the form of patches) poses a serious threat for the use of deep learning models in safety-critical computer vision tasks.
This paper presents an evaluation of the robustness of semantic segmentation models when attacked with different types of adversarial patches.
A novel loss function is proposed to improve the capabilities of attackers in inducing a misclassification of pixels.
arXiv Detail & Related papers (2022-01-05T22:33:43Z) - Segment and Complete: Defending Object Detectors against Adversarial
Patch Attacks with Robust Patch Detection [142.24869736769432]
Adversarial patch attacks pose a serious threat to state-of-the-art object detectors.
We propose Segment and Complete defense (SAC), a framework for defending object detectors against patch attacks.
We show SAC can significantly reduce the targeted attack success rate of physical patch attacks.
arXiv Detail & Related papers (2021-12-08T19:18:48Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
In a real-world scenario like autonomous driving, more attention should be devoted to real-world adversarial examples (RWAEs)
This paper presents an in-depth evaluation of the robustness of popular SS models by testing the effects of both digital and real-world adversarial patches.
arXiv Detail & Related papers (2021-08-13T11:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.