NeuralOOD: Improving Out-of-Distribution Generalization Performance with Brain-machine Fusion Learning Framework
- URL: http://arxiv.org/abs/2408.14950v1
- Date: Tue, 27 Aug 2024 10:54:37 GMT
- Title: NeuralOOD: Improving Out-of-Distribution Generalization Performance with Brain-machine Fusion Learning Framework
- Authors: Shuangchen Zhao, Changde Du, Hui Li, Huiguang He,
- Abstract summary: We propose a novel Brain-machine Fusion Learning framework to fuse visual knowledge from CV model and prior cognitive knowledge from the human brain.
We employ a pre-trained visual neural encoding model to predict the functional Magnetic Resonance Imaging (fMRI) from visual features.
Our model outperforms the DINOv2 and baseline models on the ImageNet-1k validation dataset as well as six curated OOD datasets.
- Score: 13.25912138698749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) have demonstrated exceptional recognition capabilities in traditional computer vision (CV) tasks. However, existing CV models often suffer a significant decrease in accuracy when confronted with out-of-distribution (OOD) data. In contrast to these DNN models, human can maintain a consistently low error rate when facing OOD scenes, partly attributed to the rich prior cognitive knowledge stored in the human brain. Previous OOD generalization researches only focus on the single modal, overlooking the advantages of multimodal learning method. In this paper, we utilize the multimodal learning method to improve the OOD generalization and propose a novel Brain-machine Fusion Learning (BMFL) framework. We adopt the cross-attention mechanism to fuse the visual knowledge from CV model and prior cognitive knowledge from the human brain. Specially, we employ a pre-trained visual neural encoding model to predict the functional Magnetic Resonance Imaging (fMRI) from visual features which eliminates the need for the fMRI data collection and pre-processing, effectively reduces the workload associated with conventional BMFL methods. Furthermore, we construct a brain transformer to facilitate the extraction of knowledge inside the fMRI data. Moreover, we introduce the Pearson correlation coefficient maximization regularization method into the training process, which improves the fusion capability with better constrains. Our model outperforms the DINOv2 and baseline models on the ImageNet-1k validation dataset as well as six curated OOD datasets, showcasing its superior performance in diverse scenarios.
Related papers
- Teaching CORnet Human fMRI Representations for Enhanced Model-Brain Alignment [2.035627332992055]
Functional magnetic resonance imaging (fMRI) as a widely used technique in cognitive neuroscience can record neural activation in the human visual cortex during the process of visual perception.
This study proposed ReAlnet-fMRI, a model based on the SOTA vision model CORnet but optimized using human fMRI data through a multi-layer encoding-based alignment framework.
The fMRI-optimized ReAlnet-fMRI exhibited higher similarity to the human brain than both CORnet and the control model in within-and across-subject as well as within- and across-modality model-brain (fMRI and EEG
arXiv Detail & Related papers (2024-07-15T03:31:42Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
We propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data.
BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks.
arXiv Detail & Related papers (2024-06-24T19:16:24Z) - See Through Their Minds: Learning Transferable Neural Representation from Cross-Subject fMRI [32.40827290083577]
Deciphering visual content from functional Magnetic Resonance Imaging (fMRI) helps illuminate the human vision system.
Previous approaches primarily employ subject-specific models, sensitive to training sample size.
We propose shallow subject-specific adapters to map cross-subject fMRI data into unified representations.
During training, we leverage both visual and textual supervision for multi-modal brain decoding.
arXiv Detail & Related papers (2024-03-11T01:18:49Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
We introduce a sparse multitask learning framework for motor imagery (MI) and motor execution (ME) tasks.
Given a dual-task CNN model for MI-ME classification, we apply a saliency-based sparsification approach to prune superfluous connections.
Our results indicate that this tailored sparsity can mitigate the overfitting problem and improve the test performance with small amount of data.
arXiv Detail & Related papers (2023-12-10T09:06:16Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
A lack of consideration for neural network calibration will not gain trust from humans.
We introduce the Neural Clamping Toolkit, the first open-source framework designed to help developers employ state-of-the-art model-agnostic calibrated models.
arXiv Detail & Related papers (2022-11-29T15:03:05Z) - Performance or Trust? Why Not Both. Deep AUC Maximization with
Self-Supervised Learning for COVID-19 Chest X-ray Classifications [72.52228843498193]
In training deep learning models, a compromise often must be made between performance and trust.
In this work, we integrate a new surrogate loss with self-supervised learning for computer-aided screening of COVID-19 patients.
arXiv Detail & Related papers (2021-12-14T21:16:52Z) - Evaluating deep transfer learning for whole-brain cognitive decoding [11.898286908882561]
Transfer learning (TL) is well-suited to improve the performance of deep learning (DL) models in datasets with small numbers of samples.
Here, we evaluate TL for the application of DL models to the decoding of cognitive states from whole-brain functional Magnetic Resonance Imaging (fMRI) data.
arXiv Detail & Related papers (2021-11-01T15:44:49Z) - Modality Compensation Network: Cross-Modal Adaptation for Action
Recognition [77.24983234113957]
We propose a Modality Compensation Network (MCN) to explore the relationships of different modalities.
Our model bridges data from source and auxiliary modalities by a modality adaptation block to achieve adaptive representation learning.
Experimental results reveal that MCN outperforms state-of-the-art approaches on four widely-used action recognition benchmarks.
arXiv Detail & Related papers (2020-01-31T04:51:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.