Flexible categorization using formal concept analysis and Dempster-Shafer theory
- URL: http://arxiv.org/abs/2408.15012v1
- Date: Fri, 23 Aug 2024 07:28:20 GMT
- Title: Flexible categorization using formal concept analysis and Dempster-Shafer theory
- Authors: Marcel Boersma, Krishna Manoorkar, Alessandra Palmigiano, Mattia Panettiere, Apostolos Tzimoulis, Nachoem Wijnberg,
- Abstract summary: This paper provides a formal ground to obtain and study explainable categorizations from the data represented as bipartite graphs.
We use this framework to describe a machine-leaning meta algorithm for detection and classification which can provide local and global explanations of its result.
- Score: 40.30013238421509
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Categorization of business processes is an important part of auditing. Large amounts of transactional data in auditing can be represented as transactions between financial accounts using weighted bipartite graphs. We view such bipartite graphs as many-valued formal contexts, which we use to obtain explainable categorization of these business processes in terms of financial accounts involved in a business process by using methods in formal concept analysis. We use Dempster-Shafer mass functions to represent agendas showing different interest in different set of financial accounts. We also model some possible deliberation scenarios between agents with different interrogative agendas to reach an aggregated agenda and categorization. The framework developed in this paper provides a formal ground to obtain and study explainable categorizations from the data represented as bipartite graphs according to the agendas of different agents in an organization (e.g. an audit firm), and interaction between these through deliberation. We use this framework to describe a machine-leaning meta algorithm for outlier detection and classification which can provide local and global explanations of its result and demonstrate it through an outlier detection algorithm.
Related papers
- Coarse Set Theory: A Mathematical Foundation for Coarse Ethics [0.0]
This paper introduces Coarse Set Theory (CST) to establish a mathematical framework for Coarse Ethics (CE)
We define coarse sets using totally ordered sets and propose axioms that characterize the hierarchical relationships between elements and their groupings.
We extend this framework by defining coarse mappings, which transform detailed individual data into coarser representations.
arXiv Detail & Related papers (2025-02-11T08:18:37Z) - Interpreting Inflammation Prediction Model via Tag-based Cohort Explanation [5.356481722174994]
We propose a novel framework for identifying cohorts within a dataset based on local feature importance scores.
We evaluate our framework on a food-based inflammation prediction model and demonstrated that the framework can generate reliable explanations that match domain knowledge.
arXiv Detail & Related papers (2024-10-17T23:22:59Z) - CohEx: A Generalized Framework for Cohort Explanation [5.269665407562217]
Cohort explanations offer insights into the explainee's behavior on a specific group or cohort of instances.
In this paper, we discuss the unique challenges and opportunities associated with measuring cohort explanations.
arXiv Detail & Related papers (2024-10-17T03:36:18Z) - Logifold: A Geometrical Foundation of Ensemble Machine Learning [0.0]
We present a local-to-global and measure-theoretical approach to understanding datasets.
The core idea is to formulate a logifold structure and to interpret network models with restricted domains as local charts of datasets.
arXiv Detail & Related papers (2024-07-23T04:47:58Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
This approach allows for the computer-assisted analysis of abstract dialectical frameworks.
Exemplary applications include the formal analysis and verification of meta-theoretical properties.
arXiv Detail & Related papers (2023-12-08T09:32:26Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - A Category-theoretical Meta-analysis of Definitions of Disentanglement [97.34033555407403]
Disentangling the factors of variation in data is a fundamental concept in machine learning.
This paper presents a meta-analysis of existing definitions of disentanglement.
arXiv Detail & Related papers (2023-05-11T15:24:20Z) - A Unifying Framework for Causal Explanation of Sequential Decision
Making [24.29934526009098]
We present a novel framework for causal explanations of sequential decision-making systems.
We show how to identify semantically distinct types of explanations for agent actions using a single unified approach.
arXiv Detail & Related papers (2022-05-30T23:17:58Z) - Resolving label uncertainty with implicit posterior models [71.62113762278963]
We propose a method for jointly inferring labels across a collection of data samples.
By implicitly assuming the existence of a generative model for which a differentiable predictor is the posterior, we derive a training objective that allows learning under weak beliefs.
arXiv Detail & Related papers (2022-02-28T18:09:44Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
We present an approach for representing abstract argumentation frameworks based on an encoding into classical higher-order logic.
This provides a uniform framework for computer-assisted assessment of abstract argumentation frameworks using interactive and automated reasoning tools.
arXiv Detail & Related papers (2021-10-18T10:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.