Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection
- URL: http://arxiv.org/abs/2408.15020v2
- Date: Sat, 21 Sep 2024 08:45:17 GMT
- Title: Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection
- Authors: Siyuan Yao, Hao Sun, Tian-Zhu Xiang, Xiao Wang, Xiaochun Cao,
- Abstract summary: We propose a hierarchical graph interaction network termed HGINet for camouflaged object detection.
The network is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features.
Our experiments demonstrate the superior performance of HGINet compared to existing state-of-the-art methods.
- Score: 57.883265488038134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camouflaged object detection (COD) aims to identify the objects that seamlessly blend into the surrounding backgrounds. Due to the intrinsic similarity between the camouflaged objects and the background region, it is extremely challenging to precisely distinguish the camouflaged objects by existing approaches. In this paper, we propose a hierarchical graph interaction network termed HGINet for camouflaged object detection, which is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features. Specifically, we first design a region-aware token focusing attention (RTFA) with dynamic token clustering to excavate the potentially distinguishable tokens in the local region. Afterwards, a hierarchical graph interaction transformer (HGIT) is proposed to construct bi-directional aligned communication between hierarchical features in the latent interaction space for visual semantics enhancement. Furthermore, we propose a decoder network with confidence aggregated feature fusion (CAFF) modules, which progressively fuses the hierarchical interacted features to refine the local detail in ambiguous regions. Extensive experiments conducted on the prevalent datasets, i.e. COD10K, CAMO, NC4K and CHAMELEON demonstrate the superior performance of HGINet compared to existing state-of-the-art methods. Our code is available at https://github.com/Garyson1204/HGINet.
Related papers
- ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
Recent object (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios.
We propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and camouflaged zooming in and out.
Our framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks.
arXiv Detail & Related papers (2023-10-31T06:11:23Z) - Unveiling Camouflage: A Learnable Fourier-based Augmentation for
Camouflaged Object Detection and Instance Segmentation [27.41886911999097]
We propose a learnable augmentation method for camouflaged object detection (COD) and camouflaged instance segmentation (CIS)
Our proposed augmentation method boosts the performance of camouflaged object detectors and camouflaged instance segmenters by large margins.
arXiv Detail & Related papers (2023-08-29T22:43:46Z) - Camouflaged Object Detection with Feature Grafting and Distractor Aware [9.791590363932519]
We propose a novel Feature Grafting and Distractor Aware network (FDNet) to handle the Camouflaged Object Detection task.
Specifically, we use CNN and Transformer to encode multi-scale images in parallel.
A Distractor Aware Module is designed to explicitly model the two possible distractors in the COD task to refine the coarse camouflage map.
arXiv Detail & Related papers (2023-07-08T09:37:08Z) - Feature Shrinkage Pyramid for Camouflaged Object Detection with
Transformers [34.42710399235461]
Vision transformers have recently shown strong global context modeling capabilities in camouflaged object detection.
They suffer from two major limitations: less effective locality modeling and insufficient feature aggregation in decoders.
We propose a novel transformer-based Feature Shrinkage Pyramid Network (FSPNet), which aims to hierarchically decode locality-enhanced neighboring transformer features.
arXiv Detail & Related papers (2023-03-26T20:50:58Z) - DQnet: Cross-Model Detail Querying for Camouflaged Object Detection [54.82390534024954]
A convolutional neural network (CNN) for camouflaged object detection tends to activate local discriminative regions while ignoring complete object extent.
In this paper, we argue that partial activation is caused by the intrinsic characteristics of CNN.
In order to obtain feature maps that could activate full object extent, a novel framework termed Cross-Model Detail Querying network (DQnet) is proposed.
arXiv Detail & Related papers (2022-12-16T06:23:58Z) - Feature Aggregation and Propagation Network for Camouflaged Object
Detection [42.33180748293329]
Camouflaged object detection (COD) aims to detect/segment camouflaged objects embedded in the environment.
Several COD methods have been developed, but they still suffer from unsatisfactory performance due to intrinsic similarities between foreground objects and background surroundings.
We propose a novel Feature Aggregation and propagation Network (FAP-Net) for camouflaged object detection.
arXiv Detail & Related papers (2022-12-02T05:54:28Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
The objective of image manipulation detection is to identify and locate the manipulated regions in the images.
Recent approaches mostly adopt the sophisticated Convolutional Neural Networks (CNNs) to capture the tampering artifacts left in the images.
We propose a hierarchical Graph Convolutional Network (HGCN-Net), which consists of two parallel branches.
arXiv Detail & Related papers (2022-01-15T01:54:25Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.