SiHGNN: Leveraging Properties of Semantic Graphs for Efficient HGNN Acceleration
- URL: http://arxiv.org/abs/2408.15089v1
- Date: Tue, 27 Aug 2024 14:20:21 GMT
- Title: SiHGNN: Leveraging Properties of Semantic Graphs for Efficient HGNN Acceleration
- Authors: Runzhen Xue, Mingyu Yan, Dengke Han, Zhimin Tang, Xiaochun Ye, Dongrui Fan,
- Abstract summary: Heterogeneous Graph Neural Networks (HGNNs) have expanded graph representation learning to heterogeneous graph fields.
Recent studies have demonstrated their superior performance across various applications, including medical analysis and recommendation systems.
We propose a lightweight hardware accelerator for HGNNs, called SiHGNN. This accelerator incorporates a tree-based Semantic Graph Builder for efficient semantic graph generation and features a novel Graph Restructurer for optimizing semantic graph layouts.
- Score: 9.85638913900595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous Graph Neural Networks (HGNNs) have expanded graph representation learning to heterogeneous graph fields. Recent studies have demonstrated their superior performance across various applications, including medical analysis and recommendation systems, often surpassing existing methods. However, GPUs often experience inefficiencies when executing HGNNs due to their unique and complex execution patterns. Compared to traditional Graph Neural Networks, these patterns further exacerbate irregularities in memory access. To tackle these challenges, recent studies have focused on developing domain-specific accelerators for HGNNs. Nonetheless, most of these efforts have concentrated on optimizing the datapath or scheduling data accesses, while largely overlooking the potential benefits that could be gained from leveraging the inherent properties of the semantic graph, such as its topology, layout, and generation. In this work, we focus on leveraging the properties of semantic graphs to enhance HGNN performance. First, we analyze the Semantic Graph Build (SGB) stage and identify significant opportunities for data reuse during semantic graph generation. Next, we uncover the phenomenon of buffer thrashing during the Graph Feature Processing (GFP) stage, revealing potential optimization opportunities in semantic graph layout. Furthermore, we propose a lightweight hardware accelerator frontend for HGNNs, called SiHGNN. This accelerator frontend incorporates a tree-based Semantic Graph Builder for efficient semantic graph generation and features a novel Graph Restructurer for optimizing semantic graph layouts. Experimental results show that SiHGNN enables the state-of-the-art HGNN accelerator to achieve an average performance improvement of 2.95$\times$.
Related papers
- Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
We propose a novel Graph structure Prompt Learning method (GPL) to enhance the training of Graph networks (GNNs)
GPL employs task-independent graph structure losses to encourage GNNs to learn intrinsic graph characteristics while simultaneously solving downstream tasks.
In experiments on eleven real-world datasets, after being trained by neural prediction, GNNs significantly outperform their original performance on node classification, graph classification, and edge tasks.
arXiv Detail & Related papers (2024-07-16T03:59:18Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
Graph Neural Networks (GNNs) are effective tools for graph representation learning.
We propose a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models.
We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs.
arXiv Detail & Related papers (2022-06-01T09:59:09Z) - LSP : Acceleration and Regularization of Graph Neural Networks via
Locality Sensitive Pruning of Graphs [2.4250821950628234]
Graph Neural Networks (GNNs) have emerged as highly successful tools for graph-related tasks.
Large graphs often involve many redundant components that can be removed without compromising the performance.
We propose a systematic method called Locality-Sensitive Pruning (LSP) for graph pruning based on Locality-Sensitive Hashing.
arXiv Detail & Related papers (2021-11-10T14:12:28Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGAT is a method to make attention based GNNs lightweight by using spectral sparsification to generate an optimal pruning of the input graph.
We experimentally evaluate FastGAT on several large real world graph datasets for node classification tasks.
arXiv Detail & Related papers (2020-06-15T22:07:54Z) - Data Augmentation for Graph Neural Networks [32.24311481878144]
We study graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification.
Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure.
Our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction.
arXiv Detail & Related papers (2020-06-11T21:17:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.