Machine Learning for Methane Detection and Quantification from Space -- A survey
- URL: http://arxiv.org/abs/2408.15122v1
- Date: Tue, 27 Aug 2024 15:03:20 GMT
- Title: Machine Learning for Methane Detection and Quantification from Space -- A survey
- Authors: Enno Tiemann, Shanyu Zhou, Alexander Kläser, Konrad Heidler, Rochelle Schneider, Xiao Xiang Zhu,
- Abstract summary: Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
- Score: 49.7996292123687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years, and it also acts as an air pollutant. Given its high radiative forcing potential and relatively short atmospheric lifetime (9\textpm1 years), methane has important implications for climate change, therefore, cutting methane emissions is crucial for effective climate change mitigation. This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands. It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches. The architecture and data used in such ML models will be discussed separately for methane plume segmentation and emission rate estimation. Traditionally, experts rely on labor-intensive manually adjusted methods for methane detection. However, ML approaches offer greater scalability. Our analysis reveals that ML models outperform traditional methods, particularly those based on convolutional neural networks (CNN), which are based on the U-net and transformer architectures. These ML models extract valuable information from methane-sensitive spectral data, enabling a more accurate detection. Challenges arise when comparing these methods due to variations in data, sensor specifications, and evaluation metrics. To address this, we discuss existing datasets and metrics, providing an overview of available resources and identifying open research problems. Finally, we explore potential future advances in ML, emphasizing approaches for model comparability, large dataset creation, and the European Union's forthcoming methane strategy.
Related papers
- Unlocking the Potential: Multi-task Deep Learning for Spaceborne Quantitative Monitoring of Fugitive Methane Plumes [0.7970333810038046]
Methane concentration inversion, plume segmentation, and emission rate estimation are three subtasks of methane emission monitoring.
We introduce a novel deep learning-based framework for quantitative methane emission monitoring from remote sensing images.
We train a U-Net network for methane concentration inversion, a Mask R-CNN network for methane plume segmentation, and a ResNet-50 network for methane emission rate estimation.
arXiv Detail & Related papers (2024-01-23T16:04:19Z) - Machine Learning Driven Sensitivity Analysis of E3SM Land Model
Parameters for Wetland Methane Emissions [12.826828430320843]
Methane (CH4) is the second most critical greenhouse gas after carbon dioxide, contributing to 16-25% of the observed atmospheric warming.
Sensitivity Analysis (SA) can help identify critical parameters for methane emission and achieve reduced biases and uncertainties in future projections.
This study performs SA for 19 selected parameters responsible for critical biogeochemical processes in the methane module of the Energy Exascale Earth System Model (E3SM) land model (ELM)
arXiv Detail & Related papers (2023-12-05T14:16:13Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
Methane is one of the most potent greenhouse gases.
Current methane emission monitoring techniques rely on approximate emission factors or self-reporting.
Deep learning methods can be leveraged to automatize the detection of methane leaks in Sentinel-2 satellite multispectral data.
arXiv Detail & Related papers (2023-08-21T19:36:50Z) - SSL-SoilNet: A Hybrid Transformer-based Framework with Self-Supervised Learning for Large-scale Soil Organic Carbon Prediction [2.554658234030785]
This study introduces a novel approach that aims to learn the geographical link between multimodal features via self-supervised contrastive learning.
The proposed approach has undergone rigorous testing on two distinct large-scale datasets.
arXiv Detail & Related papers (2023-08-07T13:44:44Z) - MethaneMapper: Spectral Absorption aware Hyperspectral Transformer for
Methane Detection [13.247385727508155]
Methane is the chief contributor to global climate change.
We propose a novel end-to-end spectral absorption wavelength aware transformer network, MethaneMapper, to detect and quantify the emissions.
MethaneMapper achieves 0.63 mAP in detection and reduces the model size (by 5x) compared to the current state of the art.
arXiv Detail & Related papers (2023-04-05T22:15:18Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Local manifold learning and its link to domain-based physics knowledge [53.15471241298841]
In many reacting flow systems, the thermo-chemical state-space is assumed to evolve close to a low-dimensional manifold (LDM)
We show that PCA applied in local clusters of data (local PCA) is capable of detecting the intrinsic parameterization of the thermo-chemical state-space.
arXiv Detail & Related papers (2022-07-01T09:06:25Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.