Anomaly Detection in Time Series of EDFA Pump Currents to Monitor Degeneration Processes using Fuzzy Clustering
- URL: http://arxiv.org/abs/2408.15268v2
- Date: Fri, 30 Aug 2024 06:18:45 GMT
- Title: Anomaly Detection in Time Series of EDFA Pump Currents to Monitor Degeneration Processes using Fuzzy Clustering
- Authors: Dominic Schneider, Lutz Rapp, Christoph Ament,
- Abstract summary: This article proposes a novel fuzzy clustering based anomaly detection method for pump current time series of EDFA systems.
The proposed change detection framework (CDF) strategically combines the advantages of entropy analysis (EA) and principle component analysis (PCA) with fuzzy clustering procedures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article proposes a novel fuzzy clustering based anomaly detection method for pump current time series of EDFA systems. The proposed change detection framework (CDF) strategically combines the advantages of entropy analysis (EA) and principle component analysis (PCA) with fuzzy clustering procedures. In the framework, EA is applied for dynamic selection of features for reduction of the feature space and increase of computational performance. Furthermore, PCA is utilized to extract features from the raw feature space to enable generalization capability of the subsequent fuzzy clustering procedures. Three different fuzzy clustering methods, more precisely the fuzzy clustering algorithm, a probabilistic clustering algorithm and a possibilistic clustering algorithm are evaluated for performance and generalization. Hence, the proposed framework has the innovative feature to detect changes in pump current time series at an early stage for arbitrary points of operation, compared to state-of-the-art predefined alarms in commercially used EDFAs. Moreover, the approach is implemented and tested using experimental data. In addition, the proposed framework enables further approaches of applying decentralized predictive maintenance for optical fiber networks.
Related papers
- A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm.
In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries.
arXiv Detail & Related papers (2024-07-14T13:37:03Z) - Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images [43.152314090830174]
We introduce an innovative clustering architecture for hyperspectral images (HSI) by unfolding an iterative solver based on the Alternating Direction Method of Multipliers (ADMM) for sparse subspace clustering.
Our approach captures well the structural characteristics of HSI data by employing the K nearest neighbors algorithm as part of a structure preservation module.
arXiv Detail & Related papers (2024-04-10T15:51:46Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-independent and identically distributed (non-IID) datasets.
A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented.
Solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties.
arXiv Detail & Related papers (2024-03-05T17:49:09Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - A Parameter-free Adaptive Resonance Theory-based Topological Clustering
Algorithm Capable of Continual Learning [20.995946115633963]
We propose a new parameter-free ART-based topological clustering algorithm capable of continual learning by introducing parameter estimation methods.
Experimental results with synthetic and real-world datasets show that the proposed algorithm has superior clustering performance to the state-of-the-art clustering algorithms without any parameter pre-specifications.
arXiv Detail & Related papers (2023-05-01T01:04:07Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Gradient Based Clustering [72.15857783681658]
We propose a general approach for distance based clustering, using the gradient of the cost function that measures clustering quality.
The approach is an iterative two step procedure (alternating between cluster assignment and cluster center updates) and is applicable to a wide range of functions.
arXiv Detail & Related papers (2022-02-01T19:31:15Z) - Unsupervised Clustered Federated Learning in Complex Multi-source
Acoustic Environments [75.8001929811943]
We introduce a realistic and challenging, multi-source and multi-room acoustic environment.
We present an improved clustering control strategy that takes into account the variability of the acoustic scene.
The proposed approach is optimized using clustering-based measures and validated via a network-wide classification task.
arXiv Detail & Related papers (2021-06-07T14:51:39Z) - A self-adaptive and robust fission clustering algorithm via heat
diffusion and maximal turning angle [4.246818236277977]
A novel and fast clustering algorithm, fission clustering algorithm, is proposed in recent year.
We propose a robust fission clustering (RFC) algorithm and a self-adaptive noise identification method.
arXiv Detail & Related papers (2021-02-07T13:16:47Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
This research gauges the ability of deep reinforcement learning (DRL) techniques to assist the optimization and control of fluid mechanical systems.
It combines a novel, "degenerate" version of the prototypical policy optimization (PPO) algorithm, that trains a neural network in optimizing the system only once per learning episode.
arXiv Detail & Related papers (2020-06-04T16:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.