Evaluating Pre-Training Bias on Severe Acute Respiratory Syndrome Dataset
- URL: http://arxiv.org/abs/2408.15398v1
- Date: Tue, 27 Aug 2024 20:49:11 GMT
- Title: Evaluating Pre-Training Bias on Severe Acute Respiratory Syndrome Dataset
- Authors: Diego Dimer Rodrigues,
- Abstract summary: This work uses the severe acute respiratory syndrome dataset from OpenDataSUS to visualize three pre-training bias metrics.
The aim is to compare the bias for the different regions, focusing on their protected attributes and comparing the model's performance with the metric values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) is a growing field of computer science that has found many practical applications in several domains, including Health. However, as data grows in size and availability, and the number of models that aim to aid or replace human decisions, it raises the concern that these models can be susceptible to bias, which can lead to harm to specific individuals by basing its decisions on protected attributes such as gender, religion, sexual orientation, ethnicity, and others. Visualization techniques might generate insights and help summarize large datasets, enabling data scientists to understand the data better before training a model by evaluating pre-training metrics applied to the datasets before training, which might contribute to identifying potential harm before any effort is put into training and deploying the models. This work uses the severe acute respiratory syndrome dataset from OpenDataSUS to visualize three pre-training bias metrics and their distribution across different regions in Brazil. A random forest model is trained in each region and applied to the others. The aim is to compare the bias for the different regions, focusing on their protected attributes and comparing the model's performance with the metric values.
Related papers
- Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - On the Connection between Pre-training Data Diversity and Fine-tuning
Robustness [66.30369048726145]
We find that the primary factor influencing downstream effective robustness is data quantity.
We demonstrate our findings on pre-training distributions drawn from various natural and synthetic data sources.
arXiv Detail & Related papers (2023-07-24T05:36:19Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Assessing Demographic Bias Transfer from Dataset to Model: A Case Study
in Facial Expression Recognition [1.5340540198612824]
Two metrics focus on the representational and stereotypical bias of the dataset, and the third one on the residual bias of the trained model.
We demonstrate the usefulness of the metrics by applying them to a FER problem based on the popular Affectnet dataset.
arXiv Detail & Related papers (2022-05-20T09:40:42Z) - Zero-shot meta-learning for small-scale data from human subjects [10.320654885121346]
We develop a framework to rapidly adapt to a new prediction task with limited training data for out-of-sample test data.
Our model learns the latent treatment effects of each intervention and, by design, can naturally handle multi-task predictions.
Our model has implications for improved generalization of small-size human studies to the wider population.
arXiv Detail & Related papers (2022-03-29T17:42:04Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
Pre-training has shown success in different areas of machine learning, such as Computer Vision (CV), Natural Language Processing (NLP) and medical imaging.
In this paper, we apply unsupervised pre-training to heterogeneous, multi-modal EHR data for patient outcome prediction.
We find that our proposed graph based pre-training method helps in modeling the data at a population level.
arXiv Detail & Related papers (2022-03-23T17:59:45Z) - A Real Use Case of Semi-Supervised Learning for Mammogram Classification
in a Local Clinic of Costa Rica [0.5541644538483946]
Training a deep learning model requires a considerable amount of labeled images.
A number of publicly available datasets have been built with data from different hospitals and clinics.
The use of the semi-supervised deep learning approach known as MixMatch, to leverage the usage of unlabeled data is proposed and evaluated.
arXiv Detail & Related papers (2021-07-24T22:26:50Z) - Dataset Cartography: Mapping and Diagnosing Datasets with Training
Dynamics [118.75207687144817]
We introduce Data Maps, a model-based tool to characterize and diagnose datasets.
We leverage a largely ignored source of information: the behavior of the model on individual instances during training.
Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.
arXiv Detail & Related papers (2020-09-22T20:19:41Z) - Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's
Disease Classification of Gait Patterns [3.5939555573102857]
We show how to extract features relevant to accelerometer gait data for Parkinson's disease classification.
Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model.
We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.
arXiv Detail & Related papers (2020-05-06T04:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.