Hand1000: Generating Realistic Hands from Text with Only 1,000 Images
- URL: http://arxiv.org/abs/2408.15461v2
- Date: Wed, 4 Sep 2024 02:45:56 GMT
- Title: Hand1000: Generating Realistic Hands from Text with Only 1,000 Images
- Authors: Haozhuo Zhang, Bin Zhu, Yu Cao, Yanbin Hao,
- Abstract summary: We propose a novel approach named Hand1000 that enables the generation of realistic hand images with target gesture.
The training of Hand1000 is divided into three stages with the first stage aiming to enhance the model's understanding of hand anatomy.
We construct the first publicly available dataset specifically designed for text-to-hand image generation.
- Score: 29.562925199318197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image generation models have achieved remarkable advancements in recent years, aiming to produce realistic images from textual descriptions. However, these models often struggle with generating anatomically accurate representations of human hands. The resulting images frequently exhibit issues such as incorrect numbers of fingers, unnatural twisting or interlacing of fingers, or blurred and indistinct hands. These issues stem from the inherent complexity of hand structures and the difficulty in aligning textual descriptions with precise visual depictions of hands. To address these challenges, we propose a novel approach named Hand1000 that enables the generation of realistic hand images with target gesture using only 1,000 training samples. The training of Hand1000 is divided into three stages with the first stage aiming to enhance the model's understanding of hand anatomy by using a pre-trained hand gesture recognition model to extract gesture representation. The second stage further optimizes text embedding by incorporating the extracted hand gesture representation, to improve alignment between the textual descriptions and the generated hand images. The third stage utilizes the optimized embedding to fine-tune the Stable Diffusion model to generate realistic hand images. In addition, we construct the first publicly available dataset specifically designed for text-to-hand image generation. Based on the existing hand gesture recognition dataset, we adopt advanced image captioning models and LLaMA3 to generate high-quality textual descriptions enriched with detailed gesture information. Extensive experiments demonstrate that Hand1000 significantly outperforms existing models in producing anatomically correct hand images while faithfully representing other details in the text, such as faces, clothing, and colors.
Related papers
- AttentionHand: Text-driven Controllable Hand Image Generation for 3D Hand Reconstruction in the Wild [18.351368674337134]
AttentionHand is a novel method for text-driven controllable hand image generation.
It can generate various and numerous in-the-wild hand images well-aligned with 3D hand label.
It achieves state-of-the-art among text-to-hand image generation models.
arXiv Detail & Related papers (2024-07-25T13:29:32Z) - Improving face generation quality and prompt following with synthetic captions [57.47448046728439]
We introduce a training-free pipeline designed to generate accurate appearance descriptions from images of people.
We then use these synthetic captions to fine-tune a text-to-image diffusion model.
Our results demonstrate that this approach significantly improves the model's ability to generate high-quality, realistic human faces.
arXiv Detail & Related papers (2024-05-17T15:50:53Z) - RHanDS: Refining Malformed Hands for Generated Images with Decoupled Structure and Style Guidance [41.213241942526935]
diffusion models can generate high-quality human images, but their applications are limited by the instability in generating hands with correct structures.
We propose a conditional diffusion-based framework RHanDS to refine the hand region with the help of decoupled structure and style guidance.
The experimental results show that RHanDS can effectively refine hands structure- and style- correctly compared with previous methods.
arXiv Detail & Related papers (2024-04-22T08:44:34Z) - Giving a Hand to Diffusion Models: a Two-Stage Approach to Improving Conditional Human Image Generation [29.79050316749927]
We introduce a novel approach to pose-conditioned human image generation, dividing the process into two stages: hand generation and subsequent body outpainting around the hands.
A novel blending technique is introduced to preserve the hand details during the second stage that combines the results of both stages in a coherent way.
Our approach not only enhances the quality of the generated hands but also offers improved control over hand pose, advancing the capabilities of pose-conditioned human image generation.
arXiv Detail & Related papers (2024-03-15T23:31:41Z) - HanDiffuser: Text-to-Image Generation With Realistic Hand Appearances [34.50137847908887]
Text-to-image generative models can generate high-quality humans, but realism is lost when generating hands.
Common artifacts include irregular hand poses, shapes, incorrect numbers of fingers, and physically implausible finger orientations.
We propose a novel diffusion-based architecture called HanDiffuser that achieves realism by injecting hand embeddings in the generative process.
arXiv Detail & Related papers (2024-03-04T03:00:22Z) - Seek for Incantations: Towards Accurate Text-to-Image Diffusion
Synthesis through Prompt Engineering [118.53208190209517]
We propose a framework to learn the proper textual descriptions for diffusion models through prompt learning.
Our method can effectively learn the prompts to improve the matches between the input text and the generated images.
arXiv Detail & Related papers (2024-01-12T03:46:29Z) - BOTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics [50.88842027976421]
We propose BOTH57M, a novel multi-modal dataset for two-hand motion generation.
Our dataset includes accurate motion tracking for the human body and hands.
We also provide a strong baseline method, BOTH2Hands, for the novel task.
arXiv Detail & Related papers (2023-12-13T07:30:19Z) - HandRefiner: Refining Malformed Hands in Generated Images by Diffusion-based Conditional Inpainting [72.95232302438207]
Diffusion models have achieved remarkable success in generating realistic images.
But they suffer from generating accurate human hands, such as incorrect finger counts or irregular shapes.
This paper introduces a lightweight post-processing solution called HandRefiner.
arXiv Detail & Related papers (2023-11-29T08:52:08Z) - Text-Guided Synthesis of Eulerian Cinemagraphs [81.20353774053768]
We introduce Text2Cinemagraph, a fully automated method for creating cinemagraphs from text descriptions.
We focus on cinemagraphs of fluid elements, such as flowing rivers, and drifting clouds, which exhibit continuous motion and repetitive textures.
arXiv Detail & Related papers (2023-07-06T17:59:31Z) - HandNeRF: Neural Radiance Fields for Animatable Interacting Hands [122.32855646927013]
We propose a novel framework to reconstruct accurate appearance and geometry with neural radiance fields (NeRF) for interacting hands.
We conduct extensive experiments to verify the merits of our proposed HandNeRF and report a series of state-of-the-art results.
arXiv Detail & Related papers (2023-03-24T06:19:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.