Depth-Weighted Detection of Behaviours of Risk in People with Dementia using Cameras
- URL: http://arxiv.org/abs/2408.15519v1
- Date: Wed, 28 Aug 2024 04:12:07 GMT
- Title: Depth-Weighted Detection of Behaviours of Risk in People with Dementia using Cameras
- Authors: Pratik K. Mishra, Irene Ballester, Andrea Iaboni, Bing Ye, Kristine Newman, Alex Mihailidis, Shehroz S. Khan,
- Abstract summary: The behavioural and psychological symptoms of dementia, such as agitation and aggression, present a significant health and safety risk in residential care settings.
Care facilities have video cameras in place for digital monitoring of public spaces, which can be leveraged to develop an automated behaviours of risk detection system.
One of the challenges in our previous study was the presence of false alarms due to obstruction of view by activities happening close to the camera.
We proposed a novel depth-weighted loss function to train a customized convolutional autoencoder to enforce equivalent importance to the events happening both near and far from the cameras.
- Score: 3.6855408155998215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The behavioural and psychological symptoms of dementia, such as agitation and aggression, present a significant health and safety risk in residential care settings. Many care facilities have video cameras in place for digital monitoring of public spaces, which can be leveraged to develop an automated behaviours of risk detection system that can alert the staff to enable timely intervention and prevent the situation from escalating. However, one of the challenges in our previous study was the presence of false alarms due to obstruction of view by activities happening close to the camera. To address this issue, we proposed a novel depth-weighted loss function to train a customized convolutional autoencoder to enforce equivalent importance to the events happening both near and far from the cameras; thus, helping to reduce false alarms and making the method more suitable for real-world deployment. The proposed method was trained using data from nine participants with dementia across three cameras situated in a specialized dementia unit and achieved an area under the curve of receiver operating characteristic of $0.852$, $0.81$ and $0.768$ for the three cameras. Ablation analysis was conducted for the individual components of the proposed method and the performance of the proposed method was investigated for participant-specific and sex-specific behaviours of risk detection. The proposed method performed reasonably well in detecting behaviours of risk in people with dementia motivating further research toward the development of a behaviours of risk detection system suitable for deployment in video surveillance systems in care facilities.
Related papers
- DPMesh: Exploiting Diffusion Prior for Occluded Human Mesh Recovery [71.6345505427213]
DPMesh is an innovative framework for occluded human mesh recovery.
It capitalizes on the profound diffusion prior about object structure and spatial relationships embedded in a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-04-01T18:59:13Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Privacy-Protecting Behaviours of Risk Detection in People with Dementia
using Videos [4.264550333891292]
We present two novel privacy-protecting video-based anomaly detection approaches to detect behaviours of risks in people with dementia.
We either extracted body pose information as skeletons and use semantic segmentation masks to replace multiple humans in the scene with their semantic boundaries.
This is one of the first studies to incorporate privacy for the detection of behaviours of risks in people with dementia.
arXiv Detail & Related papers (2022-12-20T22:55:46Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Deep Convolution Network Based Emotion Analysis for Automatic Detection
of Mild Cognitive Impairment in the Elderly [15.217754542927961]
Early detection of cognitive impairment is of great importance to both patients and caregivers.
It has been found that patients with cognitive impairment show abnormal emotion patterns.
We present a novel deep convolution network-based system to detect the cognitive impairment.
arXiv Detail & Related papers (2021-11-09T11:51:33Z) - Surveillance Evasion Through Bayesian Reinforcement Learning [78.79938727251594]
We consider a 2D continuous path planning problem with a completely unknown intensity of random termination.
Those Observers' surveillance intensity is a priori unknown and has to be learned through repetitive path planning.
arXiv Detail & Related papers (2021-09-30T02:29:21Z) - Video-Based Inpatient Fall Risk Assessment: A Case Study [23.712621878547697]
Inpatient falls are a serious safety issue in hospitals and healthcare facilities.
Recent advances in video analytics for patient monitoring provide a non-intrusive avenue to reduce this risk through continuous activity monitoring.
Here, we propose a video-based system that can monitor the risk of a patient falling, and alert staff of unsafe behaviour to help prevent falls before they occur.
arXiv Detail & Related papers (2021-05-27T13:02:29Z) - Perceiving Humans: from Monocular 3D Localization to Social Distancing [93.03056743850141]
We present a new cost-effective vision-based method that perceives humans' locations in 3D and their body orientation from a single image.
We show that it is possible to rethink the concept of "social distancing" as a form of social interaction in contrast to a simple location-based rule.
arXiv Detail & Related papers (2020-09-01T10:12:30Z) - DeepSOCIAL: Social Distancing Monitoring and Infection Risk Assessment
in COVID-19 Pandemic [1.027974860479791]
Social distancing is a recommended solution by the World Health Organisation (WHO) to minimise the spread of COVID-19 in public places.
We develop a hybrid Computer Vision and YOLOv4-based Deep Neural Network model for automated people detection in the crowd using common CCTV cameras.
The developed model is a generic and accurate people detection and tracking solution that can be applied in many other fields.
arXiv Detail & Related papers (2020-08-26T16:56:57Z) - Inter-Homines: Distance-Based Risk Estimation for Human Safety [44.266630835933434]
Our system evaluates in real-time the contagion risk in a monitored area by analyzing video streams.
It is able to locate people in 3D space, calculate distances and predict risk levels.
Inter-Ho-mines works both indoor and outdoor, in public and private crowded areas.
arXiv Detail & Related papers (2020-07-20T16:32:27Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.