Network transferability of adversarial patches in real-time object detection
- URL: http://arxiv.org/abs/2408.15833v1
- Date: Wed, 28 Aug 2024 14:47:34 GMT
- Title: Network transferability of adversarial patches in real-time object detection
- Authors: Jens Bayer, Stefan Becker, David Münch, Michael Arens,
- Abstract summary: Adversarial patches in computer vision can be used to fool deep neural networks and manipulate their decision-making process.
This paper investigates the transferability across numerous object detector architectures.
- Score: 3.237380113935023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial patches in computer vision can be used, to fool deep neural networks and manipulate their decision-making process. One of the most prominent examples of adversarial patches are evasion attacks for object detectors. By covering parts of objects of interest, these patches suppress the detections and thus make the target object 'invisible' to the object detector. Since these patches are usually optimized on a specific network with a specific train dataset, the transferability across multiple networks and datasets is not given. This paper addresses these issues and investigates the transferability across numerous object detector architectures. Our extensive evaluation across various models on two distinct datasets indicates that patches optimized with larger models provide better network transferability than patches that are optimized with smaller models.
Related papers
- The Importance of Anti-Aliasing in Tiny Object Detection [0.0]
This paper applies an existing approach WaveCNet for anti-aliasing to tiny object detection.
We modify the original WaveCNet to apply Wavelet Pooling layers, effectively suppressing aliasing.
We also propose a bottom-heavy version of the backbone, which further improves the performance of tiny object detection.
arXiv Detail & Related papers (2023-10-22T08:02:01Z) - The Weaknesses of Adversarial Camouflage in Overhead Imagery [7.724233098666892]
We build a library of 24 adversarial patches to disguise four different object classes: bus, car, truck, van.
We show that while adversarial patches may fool object detectors, the presence of such patches is often easily uncovered.
This raises the question of whether such patches truly constitute camouflage.
arXiv Detail & Related papers (2022-07-06T20:39:21Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
A new design (named Detection Hub) is dataset-aware and category-aligned.
It mitigates the dataset inconsistency and provides coherent guidance for the detector to learn across multiple datasets.
The categories across datasets are semantically aligned into a unified space by replacing one-hot category representations with word embedding.
arXiv Detail & Related papers (2022-06-07T17:59:44Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
Spotting camouflaged objects that are visually assimilated into the background is tricky for object detection algorithms.
We aim to extract the high-resolution texture details to avoid the detail degradation that causes blurred vision in edges and boundaries.
We introduce a novel HitNet to refine the low-resolution representations by high-resolution features in an iterative feedback manner.
arXiv Detail & Related papers (2022-03-22T11:20:21Z) - GiraffeDet: A Heavy-Neck Paradigm for Object Detection [13.476168814994862]
We propose a novel heavy-neck paradigm, GiraffeDet, for efficient object detection.
GiraffeDet uses an extremely lightweight backbone and a very deep and large neck module.
GiraffeDet consistently outperforms previous SOTA models across a wide spectrum of resource constraints.
arXiv Detail & Related papers (2022-02-09T03:23:49Z) - Decoupled Adaptation for Cross-Domain Object Detection [69.5852335091519]
Cross-domain object detection is more challenging than object classification.
D-adapt achieves a state-of-the-art results on four cross-domain object detection tasks.
arXiv Detail & Related papers (2021-10-06T08:43:59Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
Current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos.
We present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation.
arXiv Detail & Related papers (2021-09-15T14:11:53Z) - Multi-patch Feature Pyramid Network for Weakly Supervised Object
Detection in Optical Remote Sensing Images [39.25541709228373]
We propose a new architecture for object detection with a multiple patch feature pyramid network (MPFP-Net)
MPFP-Net is different from the current models that during training only pursue the most discriminative patches.
We introduce an effective method to regularize the residual values and make the fusion transition layers strictly norm-preserving.
arXiv Detail & Related papers (2021-08-18T09:25:39Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z) - Concurrent Segmentation and Object Detection CNNs for Aircraft Detection
and Identification in Satellite Images [0.0]
We present a dedicated method to detect and identify aircraft, combining two very different convolutional neural networks (CNNs)
The results we present show that this combination outperforms significantly each unitary model, reducing drastically the false negative rate.
arXiv Detail & Related papers (2020-05-27T07:35:55Z) - NETNet: Neighbor Erasing and Transferring Network for Better Single Shot
Object Detection [170.30694322460045]
We propose a new Neighbor Erasing and Transferring (NET) mechanism to reconfigure the pyramid features and explore scale-aware features.
A single-shot network called NETNet is constructed for scale-aware object detection.
arXiv Detail & Related papers (2020-01-18T15:21:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.