Evaluating Time-Series Training Dataset through Lens of Spectrum in Deep State Space Models
- URL: http://arxiv.org/abs/2408.16261v1
- Date: Thu, 29 Aug 2024 04:46:49 GMT
- Title: Evaluating Time-Series Training Dataset through Lens of Spectrum in Deep State Space Models
- Authors: Sekitoshi Kanai, Yasutoshi Ida, Kazuki Adachi, Mihiro Uchida, Tsukasa Yoshida, Shin'ya Yamaguchi,
- Abstract summary: We introduce the concept of data evaluation methods used in system identification.
We propose the K-spectral metric, which is the sum of the top-K spectra of signals inside deep SSMs.
Our experiments show that the K-spectral metric has a large absolute value of the correlation coefficient with the performance.
- Score: 16.9884076931744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates a method to evaluate time-series datasets in terms of the performance of deep neural networks (DNNs) with state space models (deep SSMs) trained on the dataset. SSMs have attracted attention as components inside DNNs to address time-series data. Since deep SSMs have powerful representation capacities, training datasets play a crucial role in solving a new task. However, the effectiveness of training datasets cannot be known until deep SSMs are actually trained on them. This can increase the cost of data collection for new tasks, as a trial-and-error process of data collection and time-consuming training are needed to achieve the necessary performance. To advance the practical use of deep SSMs, the metric of datasets to estimate the performance early in the training can be one key element. To this end, we introduce the concept of data evaluation methods used in system identification. In system identification of linear dynamical systems, the effectiveness of datasets is evaluated by using the spectrum of input signals. We introduce this concept to deep SSMs, which are nonlinear dynamical systems. We propose the K-spectral metric, which is the sum of the top-K spectra of signals inside deep SSMs, by focusing on the fact that each layer of a deep SSM can be regarded as a linear dynamical system. Our experiments show that the K-spectral metric has a large absolute value of the correlation coefficient with the performance and can be used to evaluate the quality of training datasets.
Related papers
- Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate [118.37653302885607]
We present the Modality Integration Rate (MIR), an effective, robust, and generalized metric to indicate the multi-modal pre-training quality of Large Vision Language Models (LVLMs)
MIR is indicative about training data selection, training strategy schedule, and model architecture design to get better pre-training results.
arXiv Detail & Related papers (2024-10-09T17:59:04Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
We introduce deep unrolled self-supervised learning, which alleviates the need for such data by training a sequence-specific, model-based autoencoder.
Our proposed method exceeds the performance of its supervised counterparts.
arXiv Detail & Related papers (2024-03-25T17:40:32Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Neural Koopman prior for data assimilation [7.875955593012905]
We use a neural network architecture to embed dynamical systems in latent spaces.
We introduce methods that enable to train such a model for long-term continuous reconstruction.
The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques.
arXiv Detail & Related papers (2023-09-11T09:04:36Z) - Leveraging Neural Koopman Operators to Learn Continuous Representations
of Dynamical Systems from Scarce Data [0.0]
We propose a new deep Koopman framework that represents dynamics in an intrinsically continuous way.
This framework leads to better performance on limited training data.
arXiv Detail & Related papers (2023-03-13T10:16:19Z) - Spectral learning of Bernoulli linear dynamical systems models [21.3534487101893]
We develop a learning method for fast, efficient fitting of latent linear dynamical system models.
Our approach extends traditional subspace identification methods to the Bernoulli setting.
We show that the estimator provides real world settings by analyzing data from mice performing a sensory decision-making task.
arXiv Detail & Related papers (2023-03-03T16:29:12Z) - Meta-Learning of Neural State-Space Models Using Data From Similar
Systems [11.206109495578705]
We propose the use of model-agnostic meta-learning for constructing deep encoder network-based SSMs.
We demonstrate that meta-learning can result in more accurate neural SSM models than supervised- or transfer-learning.
arXiv Detail & Related papers (2022-11-14T22:03:35Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.