An Exploratory Deep Learning Approach for Predicting Subsequent Suicidal Acts in Chinese Psychological Support Hotlines
- URL: http://arxiv.org/abs/2408.16463v1
- Date: Thu, 29 Aug 2024 11:51:41 GMT
- Title: An Exploratory Deep Learning Approach for Predicting Subsequent Suicidal Acts in Chinese Psychological Support Hotlines
- Authors: Changwei Song, Qing Zhao, Jianqiang Li, Yining Chen, Yongsheng Tong, Guanghui Fu,
- Abstract summary: The accuracy of scale-based predictive methods for suicide risk assessment can vary widely depending on the expertise of the operator.
This study is the first to apply deep learning to long-term speech data to predict suicide risk in China.
- Score: 13.59130559079134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Psychological support hotlines are an effective suicide prevention measure that typically relies on professionals using suicide risk assessment scales to predict individual risk scores. However, the accuracy of scale-based predictive methods for suicide risk assessment can vary widely depending on the expertise of the operator. This limitation underscores the need for more reliable methods, prompting this research's innovative exploration of the use of artificial intelligence to improve the accuracy and efficiency of suicide risk prediction within the context of psychological support hotlines. The study included data from 1,549 subjects from 2015-2017 in China who contacted a psychological support hotline. Each participant was followed for 12 months to identify instances of suicidal behavior. We proposed a novel multi-task learning method that uses the large-scale pre-trained model Whisper for feature extraction and fits psychological scales while predicting the risk of suicide. The proposed method yields a 2.4\% points improvement in F1-score compared to the traditional manual approach based on the psychological scales. Our model demonstrated superior performance compared to the other eight popular models. To our knowledge, this study is the first to apply deep learning to long-term speech data to predict suicide risk in China, indicating grate potential for clinical applications. The source code is publicly available at: \url{https://github.com/songchangwei/Suicide-Risk-Prediction}.
Related papers
- Deep Learning and Large Language Models for Audio and Text Analysis in Predicting Suicidal Acts in Chinese Psychological Support Hotlines [13.59130559079134]
Approximately two million people in China attempt suicide annually, with many individuals making multiple attempts.
Deep learning models and large-scale language models (LLMs) have been introduced to the field of mental health.
This study included 1284 subjects, and was designed to validate whether deep learning models and LLMs, using audio and transcribed text from support hotlines, can effectively predict suicide risk.
arXiv Detail & Related papers (2024-09-10T02:22:50Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - SOS-1K: A Fine-grained Suicide Risk Classification Dataset for Chinese Social Media Analysis [22.709733830774788]
This study presents a Chinese social media dataset designed for fine-grained suicide risk classification.
Seven pre-trained models were evaluated in two tasks: high and low suicide risk, and fine-grained suicide risk classification on a level of 0 to 10.
Deep learning models show good performance in distinguishing between high and low suicide risk, with the best model achieving an F1 score of 88.39%.
arXiv Detail & Related papers (2024-04-19T06:58:51Z) - Non-Invasive Suicide Risk Prediction Through Speech Analysis [74.8396086718266]
We present a non-invasive, speech-based approach for automatic suicide risk assessment.
We extract three sets of features, including wav2vec, interpretable speech and acoustic features, and deep learning-based spectral representations.
Our most effective speech model achieves a balanced accuracy of $66.2,%$.
arXiv Detail & Related papers (2024-04-18T12:33:57Z) - Navigating the OverKill in Large Language Models [84.62340510027042]
We investigate the factors for overkill by exploring how models handle and determine the safety of queries.
Our findings reveal the presence of shortcuts within models, leading to an over-attention of harmful words like 'kill' and prompts emphasizing safety will exacerbate overkill.
We introduce Self-Contrastive Decoding (Self-CD), a training-free and model-agnostic strategy, to alleviate this phenomenon.
arXiv Detail & Related papers (2024-01-31T07:26:47Z) - Zero-shot causal learning [64.9368337542558]
CaML is a causal meta-learning framework which formulates the personalized prediction of each intervention's effect as a task.
We show that CaML is able to predict the personalized effects of novel interventions that do not exist at the time of training.
arXiv Detail & Related papers (2023-01-28T20:14:11Z) - Am I No Good? Towards Detecting Perceived Burdensomeness and Thwarted
Belongingness from Suicide Notes [51.378225388679425]
We present an end-to-end multitask system to address a novel task of detection of Perceived Burdensomeness (PB) and Thwarted Belongingness (TB) from suicide notes.
We also introduce a manually translated code-mixed suicide notes corpus, CoMCEASE-v2.0, based on the benchmark CEASE-v2.0 dataset.
We exploit the temporal orientation and emotion information in the suicide notes to boost overall performance.
arXiv Detail & Related papers (2022-05-20T06:31:08Z) - An ensemble deep learning technique for detecting suicidal ideation from
posts in social media platforms [0.0]
This paper proposes a LSTM-Attention-CNN combined model to analyze social media submissions to detect suicidal intentions.
The proposed model demonstrated an accuracy of 90.3 percent and an F1-score of 92.6 percent.
arXiv Detail & Related papers (2021-12-17T15:34:03Z) - Characterization of Time-variant and Time-invariant Assessment of
Suicidality on Reddit using C-SSRS [9.424631103856596]
We develop deep learning algorithms to assess suicide risk in terms of severity and temporality from Reddit data.
Our results suggest that the time-variant approach outperforms the time-invariant method in the assessment of suicide-related ideations and supportive behaviors.
The proposed approach can be integrated with clinical diagnostic interviews for improving suicide risk assessments.
arXiv Detail & Related papers (2021-04-09T01:39:41Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Survival Modeling of Suicide Risk with Rare and Uncertain Diagnoses [15.732431764583323]
We use medical claims data to study the risk of subsequent suicide attempts for patients who were hospitalized due to suicide attempts and later discharged.
Almost 20% of "suspected" suicide attempts are identified from diagnosis codes indicating external causes of injury and poisoning with undermined intent.
arXiv Detail & Related papers (2020-09-05T20:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.