Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning
- URL: http://arxiv.org/abs/2408.16486v1
- Date: Thu, 29 Aug 2024 12:34:01 GMT
- Title: Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning
- Authors: Zhengqing Gao, Xiang Ao, Xu-Yao Zhang, Cheng-Lin Liu,
- Abstract summary: Adapting pre-trained models to open classes is a challenging problem in machine learning.
In this paper, we consider combining the advantages of both and come up with a test-time prompt tuning approach.
Our proposed method outperforms all comparison methods on average considering both base and new classes.
- Score: 50.26965628047682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adapting pre-trained models to open classes is a challenging problem in machine learning. Vision-language models fully explore the knowledge of text modality, demonstrating strong zero-shot recognition performance, which is naturally suited for various open-set problems. More recently, some research focuses on fine-tuning such models to downstream tasks. Prompt tuning methods achieved huge improvements by learning context vectors on few-shot data. However, through the evaluation under open-set adaptation setting with the test data including new classes, we find that there exists a dilemma that learned prompts have worse generalization abilities than hand-crafted prompts. In this paper, we consider combining the advantages of both and come up with a test-time prompt tuning approach, which leverages the maximum concept matching (MCM) scores as dynamic weights to generate an input-conditioned prompt for each image during test. Through extensive experiments on 11 different datasets, we show that our proposed method outperforms all comparison methods on average considering both base and new classes. The code is available at https://github.com/gaozhengqing/TTPT
Related papers
- Improve Meta-learning for Few-Shot Text Classification with All You Can Acquire from the Tasks [10.556477506959888]
Existing methods often encounter difficulties in drawing accurate class prototypes from support set samples.
Recent approaches attempt to incorporate external knowledge or pre-trained language models to augment data, but this requires additional resources.
We propose a novel solution by adequately leveraging the information within the task itself.
arXiv Detail & Related papers (2024-10-14T12:47:11Z) - Conditional Prototype Rectification Prompt Learning [32.533844163120875]
We propose a Prototype Rectification Prompt Learning (CPR) method to correct the bias of base examples and augment limited data in an effective way.
CPR achieves state-of-the-art performance on both few-shot classification and base-to-new generalization tasks.
arXiv Detail & Related papers (2024-04-15T15:43:52Z) - Make Prompts Adaptable: Bayesian Modeling for Vision-Language Prompt
Learning with Data-Dependent Prior [14.232144691524528]
Recent Vision-Language Pretrained models have become the backbone for many downstream tasks.
MLE training can lead the context vector to over-fit dominant image features in the training data.
This paper presents a Bayesian-based framework of prompt learning, which could alleviate the overfitting issues on few-shot learning application.
arXiv Detail & Related papers (2024-01-09T10:15:59Z) - RPLKG: Robust Prompt Learning with Knowledge Graph [11.893917358053004]
We propose a new method, robust prompt learning with knowledge graph (RPLKG)
Based on the knowledge graph, we automatically design diverse interpretable and meaningful prompt sets.
RPLKG shows a significant performance improvement compared to zero-shot learning.
arXiv Detail & Related papers (2023-04-21T08:22:58Z) - Exploring Effective Factors for Improving Visual In-Context Learning [56.14208975380607]
In-Context Learning (ICL) is to understand a new task via a few demonstrations (aka. prompt) and predict new inputs without tuning the models.
This paper shows that prompt selection and prompt fusion are two major factors that have a direct impact on the inference performance of visual context learning.
We propose a simple framework prompt-SelF for visual in-context learning.
arXiv Detail & Related papers (2023-04-10T17:59:04Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [103.6153593636399]
We propose a vision-language prompt tuning method with mitigated label bias (M-Tuning)
It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more, and thus prompts are tuned in a simulated open-set scenario.
Our method achieves the best performance on datasets with various scales, and extensive ablation studies also validate its effectiveness.
arXiv Detail & Related papers (2023-03-09T09:05:47Z) - Unified Vision and Language Prompt Learning [86.1530128487077]
We present a systematic study on two representative prompt tuning methods, namely text prompt tuning and visual prompt tuning.
A major finding is that text prompt tuning fails on data with high intra-class visual variances while visual prompt tuning cannot handle low inter-class variances.
To combine the best from both worlds, we propose a simple approach called Unified Prompt Tuning (UPT), which essentially learns a tiny neural network to jointly optimize prompts across different modalities.
arXiv Detail & Related papers (2022-10-13T17:50:24Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
We propose test-time prompt tuning (TPT) to learn adaptive prompts on the fly with a single test sample.
TPT improves the zero-shot top-1 accuracy of CLIP by 3.6% on average.
In evaluating cross-dataset generalization with unseen categories, TPT performs on par with the state-of-the-art approaches that use additional training data.
arXiv Detail & Related papers (2022-09-15T17:55:11Z) - Multi-Modal Few-Shot Object Detection with Meta-Learning-Based
Cross-Modal Prompting [77.69172089359606]
We study multi-modal few-shot object detection (FSOD) in this paper, using both few-shot visual examples and class semantic information for detection.
Our approach is motivated by the high-level conceptual similarity of (metric-based) meta-learning and prompt-based learning.
We comprehensively evaluate the proposed multi-modal FSOD models on multiple few-shot object detection benchmarks, achieving promising results.
arXiv Detail & Related papers (2022-04-16T16:45:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.