On-device AI: Quantization-aware Training of Transformers in Time-Series
- URL: http://arxiv.org/abs/2408.16495v1
- Date: Thu, 29 Aug 2024 12:49:22 GMT
- Title: On-device AI: Quantization-aware Training of Transformers in Time-Series
- Authors: Tianheng Ling, Gregor Schiele,
- Abstract summary: The Transformer model is by far the most compelling of these AI models.
My research focuses on optimizing the Transformer model for time-series forecasting tasks.
The optimized model will be deployed as hardware accelerators on embedded Field Programmable Gate Arrays (FPGAs)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) models for time-series in pervasive computing keep getting larger and more complicated. The Transformer model is by far the most compelling of these AI models. However, it is difficult to obtain the desired performance when deploying such a massive model on a sensor device with limited resources. My research focuses on optimizing the Transformer model for time-series forecasting tasks. The optimized model will be deployed as hardware accelerators on embedded Field Programmable Gate Arrays (FPGAs). I will investigate the impact of applying Quantization-aware Training to the Transformer model to reduce its size and runtime memory footprint while maximizing the advantages of FPGAs.
Related papers
- Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Multi-scale Time-stepping of Partial Differential Equations with
Transformers [8.430481660019451]
We develop fast surrogates for Partial Differential Equations (PDEs)
Our model achieves similar or better results in predicting the time-evolution of Navier-Stokes equations.
arXiv Detail & Related papers (2023-11-03T20:26:43Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - Fourier Transformer: Fast Long Range Modeling by Removing Sequence
Redundancy with FFT Operator [24.690247474891958]
Fourier Transformer is able to significantly reduce computational costs while retain the ability to inherit from various large pretrained models.
Our model achieves state-of-the-art performances among all transformer-based models on the long-range modeling benchmark LRA.
For generative seq-to-seq tasks including CNN/DailyMail and ELI5, by inheriting the BART weights our model outperforms the standard BART.
arXiv Detail & Related papers (2023-05-24T12:33:06Z) - TransCODE: Co-design of Transformers and Accelerators for Efficient
Training and Inference [6.0093441900032465]
We propose a framework that simulates transformer inference and training on a design space of accelerators.
We use this simulator in conjunction with the proposed co-design technique, called TransCODE, to obtain the best-performing models.
The obtained transformer-accelerator pair achieves 0.3% higher accuracy than the state-of-the-art pair.
arXiv Detail & Related papers (2023-03-27T02:45:18Z) - A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA
Through Sparse Attention and Dynamic Pipelining [28.336502115532905]
This paper proposes a coherent sequence length adaptive algorithm-hardware co-design for Transformer acceleration.
We develop a hardware-friendly sparse attention operator and a length-aware hardware resource scheduling algorithm.
Our design has very small accuracy loss and has 80.2 $times$ and 2.6 $times$ speedup compared to CPU and GPU implementation.
arXiv Detail & Related papers (2022-08-07T05:48:38Z) - Transformer Acceleration with Dynamic Sparse Attention [20.758709319088865]
We propose the Dynamic Sparse Attention (DSA) that can efficiently exploit the dynamic sparsity in the attention of Transformers.
Our approach can achieve better trade-offs between accuracy and model complexity.
arXiv Detail & Related papers (2021-10-21T17:31:57Z) - Space-time Mixing Attention for Video Transformer [55.50839896863275]
We propose a Video Transformer model the complexity of which scales linearly with the number of frames in the video sequence.
We demonstrate that our model produces very high recognition accuracy on the most popular video recognition datasets.
arXiv Detail & Related papers (2021-06-10T17:59:14Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
We propose a new architecture named Visformer, which is abbreviated from the Vision-friendly Transformer'
With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy.
arXiv Detail & Related papers (2021-04-26T13:13:03Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
We study several efficient pre-training objectives for Transformers-based models.
We prove that eliminating the MASK token and considering the whole output during the loss are essential choices to improve performance.
arXiv Detail & Related papers (2021-04-20T00:09:37Z) - Train Large, Then Compress: Rethinking Model Size for Efficient Training
and Inference of Transformers [94.43313684188819]
We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute.
We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps.
This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models.
arXiv Detail & Related papers (2020-02-26T21:17:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.