CogVLM2: Visual Language Models for Image and Video Understanding
- URL: http://arxiv.org/abs/2408.16500v1
- Date: Thu, 29 Aug 2024 12:59:12 GMT
- Title: CogVLM2: Visual Language Models for Image and Video Understanding
- Authors: Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng, Shiyu Huang, Junhui Ji, Zhao Xue, Lei Zhao, Zhuoyi Yang, Xiaotao Gu, Xiaohan Zhang, Guanyu Feng, Da Yin, Zihan Wang, Ji Qi, Xixuan Song, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Yuxiao Dong, Jie Tang,
- Abstract summary: We propose the CogVLM2 family, a new generation of visual language models for image and video understanding.
As an image understanding model, CogVLM2 inherits the visual expert architecture with improved training recipes in both pre-training and post-training stages.
As a video understanding model, CogVLM2-Video integrates multi-frame input with timestamps and proposes automated temporal grounding data construction.
- Score: 69.361109860391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Beginning with VisualGLM and CogVLM, we are continuously exploring VLMs in pursuit of enhanced vision-language fusion, efficient higher-resolution architecture, and broader modalities and applications. Here we propose the CogVLM2 family, a new generation of visual language models for image and video understanding including CogVLM2, CogVLM2-Video and GLM-4V. As an image understanding model, CogVLM2 inherits the visual expert architecture with improved training recipes in both pre-training and post-training stages, supporting input resolution up to $1344 \times 1344$ pixels. As a video understanding model, CogVLM2-Video integrates multi-frame input with timestamps and proposes automated temporal grounding data construction. Notably, CogVLM2 family has achieved state-of-the-art results on benchmarks like MMBench, MM-Vet, TextVQA, MVBench and VCGBench. All models are open-sourced in https://github.com/THUDM/CogVLM2 and https://github.com/THUDM/GLM-4, contributing to the advancement of the field.
Related papers
- How Well Can Vision Language Models See Image Details? [53.036922527685064]
We introduce a pixel value prediction task to explore "How Well Can Vision Language Models See Image Details?"
Our research reveals that incorporating pixel value prediction as one of the VLM pre-training tasks and vision encoder adaptation markedly boosts VLM performance on downstream image-language understanding tasks.
arXiv Detail & Related papers (2024-08-07T17:59:40Z) - How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites [114.22835695929682]
InternVL 1.5 is an open-source multimodal large language model (MLLM)
It bridges the capability gap between open-source and proprietary commercial models in multimodal understanding.
arXiv Detail & Related papers (2024-04-25T17:59:19Z) - MiniGPT4-Video: Advancing Multimodal LLMs for Video Understanding with Interleaved Visual-Textual Tokens [36.02433030551474]
MiniGPT4-Video is a multimodal Large Language Model (LLM) designed specifically for video understanding.
MiniGPT4-video does not only consider visual content but also incorporates textual conversations, allowing the model to effectively answer queries involving both visual and text components.
arXiv Detail & Related papers (2024-04-04T12:46:01Z) - MobileVLM : A Fast, Strong and Open Vision Language Assistant for Mobile
Devices [73.46317110474064]
MobileVLM is a competent multimodal vision language model (MMVLM) targeted to run on mobile devices.
It comprises a set of language models at the scale of 1.4B and 2.7B parameters, trained from scratch, a multimodal vision model that is pre-trained in the CLIP fashion.
arXiv Detail & Related papers (2023-12-28T08:21:24Z) - Video-LLaVA: Learning United Visual Representation by Alignment Before Projection [27.04277811443469]
Video-LLaVA learns from a mixed dataset of images and videos, mutually enhancing each other.
Video-LLaVA superior performances on a broad range of 9 image benchmarks across 5 image question-answering datasets and 4 image benchmark toolkits.
arXiv Detail & Related papers (2023-11-16T10:59:44Z) - CogVLM: Visual Expert for Pretrained Language Models [56.69978233342978]
We introduce CogVLM, a powerful open-source visual language foundation model.
CogVLM bridges the gap between the frozen pretrained language model and image encoder by a trainable visual expert module in the attention and FFN layers.
CogVLM-17B achieves state-of-the-art performance on 10 classic cross-modal benchmarks, including NoCaps, Flicker30k captioning, RefCOCO, RefCO+, RefCOCOg, Visual7W, GQA, ScienceQA, VizWiz VQA and TDIUC.
arXiv Detail & Related papers (2023-11-06T13:04:39Z) - VLAB: Enhancing Video Language Pre-training by Feature Adapting and
Blending [78.1399386935455]
Large-scale image-text contrastive pre-training models, such as CLIP, have been demonstrated to effectively learn high-quality multimodal representations.
We propose a novel video-text pre-training method dubbed VLAB: Video Language pre-training by feature generativearity and Blending.
VLAB transfers CLIP representations to video pre-training tasks and develops unified video multimodal models for a wide range of video-text tasks.
arXiv Detail & Related papers (2023-05-22T15:54:22Z) - VLMo: Unified Vision-Language Pre-Training with
Mixture-of-Modality-Experts [46.55920956687346]
We present a unified Vision-Language pretrained Model (VLMo) that jointly learns a dual encoder and a fusion encoder with a modular Transformer network.
Because of the modeling flexibility of MoME, pretrained VLMo can be fine-tuned as a fusion encoder for vision-language classification tasks.
We propose a stagewise pre-training strategy, which effectively leverages large-scale image-only and text-only data besides image-text pairs.
arXiv Detail & Related papers (2021-11-03T17:20:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.