Adaptive Variational Continual Learning via Task-Heuristic Modelling
- URL: http://arxiv.org/abs/2408.16517v1
- Date: Thu, 29 Aug 2024 13:28:11 GMT
- Title: Adaptive Variational Continual Learning via Task-Heuristic Modelling
- Authors: Fan Yang,
- Abstract summary: Variational continual learning () is a turn-key learning algorithm that has state-of-the-art performance among the best continual learning models.
In our work, we explore an extension of the generalized variational continual learning (G) model, named Auto, which combines tasks for informed learning and model optimization.
- Score: 3.6119958671506707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational continual learning (VCL) is a turn-key learning algorithm that has state-of-the-art performance among the best continual learning models. In our work, we explore an extension of the generalized variational continual learning (GVCL) model, named AutoVCL, which combines task heuristics for informed learning and model optimization. We demonstrate that our model outperforms the standard GVCL with fixed hyperparameters, benefiting from the automatic adjustment of the hyperparameter based on the difficulty and similarity of the incoming task compared to the previous tasks.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - EVCL: Elastic Variational Continual Learning with Weight Consolidation [14.485182089870928]
Continual learning aims to allow models to learn new tasks without forgetting what has been learned before.
This work introduces Elastic Variational Continual Learning with Weight Consolidation (E), a novel hybrid model that integrates the variational posterior approximation mechanism of Variational Continual Learning (EWC) with the regularization-based parameter-protection strategy of Elastic Weight Consolidation (EWC)
E effectively mitigates catastrophic forgetting and enables better capture of dependencies between model parameters and task-specific data.
arXiv Detail & Related papers (2024-06-23T00:32:06Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context learning (ICL) has become an efficient approach propelled by the recent advancements in large language models (LLMs)
However, both paradigms are prone to suffer from the critical problem of overconfidence (i.e., miscalibration)
arXiv Detail & Related papers (2023-12-21T11:55:10Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
This paper extensively studies the impact of Continual Learning (CL) models as pre-trainers.
We find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance.
We propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks.
arXiv Detail & Related papers (2023-06-21T05:26:28Z) - Reinforcement Learning for Topic Models [3.42658286826597]
We apply reinforcement learning techniques to topic modeling by replacing the variational autoencoder in ProdLDA with a continuous action space reinforcement learning policy.
We introduce several modifications: modernize the neural network architecture, weight the ELBO loss, use contextual embeddings, and monitor the learning process via computing topic diversity and coherence.
arXiv Detail & Related papers (2023-05-08T16:41:08Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
We present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems.
Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions.
arXiv Detail & Related papers (2022-10-23T00:45:05Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
We present a new model-based reinforcement learning algorithm that learns a multi-headed dynamics model for dynamics generalization.
We incorporate context learning, which encodes dynamics-specific information from past experiences into the context latent vector.
Our method exhibits superior zero-shot generalization performance across a variety of control tasks, compared to state-of-the-art RL methods.
arXiv Detail & Related papers (2020-10-26T03:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.