Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment
- URL: http://arxiv.org/abs/2408.16520v1
- Date: Thu, 29 Aug 2024 13:31:15 GMT
- Title: Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment
- Authors: Liyao Tang, Zhe Chen, Shanshan Zhao, Chaoyue Wang, Dacheng Tao,
- Abstract summary: This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely.
Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels.
Existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data.
We propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions.
- Score: 62.73503467108322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Label-efficient segmentation aims to perform effective segmentation on input data using only sparse and limited ground-truth labels for training. This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely, while it is also essential for cost-effective segmentation on 2D images. Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels, and promising progress has been witnessed in both the 2D and 3D segmentation. However, existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data, which would result in significant discrepancies between generated pseudo-labels and current model predictions during training. We analyze that this can further confuse and affect the model learning process, which shows to be a shared problem in label-efficient learning across both 2D and 3D modalities. To address this issue, we propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions. More specifically, our method introduces an Entropy Regularization loss and a Distribution Alignment loss for label-efficient learning, resulting in an ERDA learning strategy. Interestingly, by using KL distance to formulate the distribution alignment loss, ERDA reduces to a deceptively simple cross-entropy-based loss which optimizes both the pseudo-label generation module and the segmentation model simultaneously. In addition, we innovate in the pseudo-label generation to make our ERDA consistently effective across both 2D and 3D data modalities for segmentation. Enjoying simplicity and more modality-agnostic pseudo-label generation, our method has shown outstanding performance in fully utilizing all unlabeled data points for training across ...
Related papers
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approaches to semi-supervised learning adopt a teacher-student framework.
We leverage pre-trained motion-forecasting models to generate object trajectories on pseudo-labeled data.
Our approach improves pseudo-label quality in two distinct manners.
arXiv Detail & Related papers (2024-09-17T05:35:00Z) - GuidedNet: Semi-Supervised Multi-Organ Segmentation via Labeled Data Guide Unlabeled Data [4.775846640214768]
Semi-supervised multi-organ medical image segmentation aids physicians in improving disease diagnosis and treatment planning.
A key concept is that voxel features from labeled and unlabeled data close each other in the feature space more likely to belong to the same class.
We introduce a Knowledge Transfer Cross Pseudo-label Supervision (KT-CPS) strategy, which leverages the prior knowledge obtained from the labeled data to guide the training of the unlabeled data.
arXiv Detail & Related papers (2024-08-09T07:46:01Z) - Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
We propose a novel 3D brain segmentation approach using complementary 2D diffusion models.
Our goal is to achieve reliable segmentation quality without requiring complete labels for each individual subject.
arXiv Detail & Related papers (2024-07-17T06:14:53Z) - Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo
Label Self-Refinement [9.69089112870202]
We propose an auxiliary pseudo-label refinement network (PRN) for online refining of the pseudo labels and also localizing the pixels whose predicted labels are likely to be noisy.
We evaluate our approach on benchmark datasets with three different domain shifts, and our approach consistently performs significantly better than the previous state-of-the-art methods.
arXiv Detail & Related papers (2023-10-25T20:31:07Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - One Thing One Click: A Self-Training Approach for Weakly Supervised 3D
Semantic Segmentation [78.36781565047656]
We propose "One Thing One Click," meaning that the annotator only needs to label one point per object.
We iteratively conduct the training and label propagation, facilitated by a graph propagation module.
Our results are also comparable to those of the fully supervised counterparts.
arXiv Detail & Related papers (2021-04-06T02:27:25Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z) - Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain
Adaptation on Person Re-identification [56.97651712118167]
Person re-identification (re-ID) aims at identifying the same persons' images across different cameras.
domain diversities between different datasets pose an evident challenge for adapting the re-ID model trained on one dataset to another one.
We propose an unsupervised framework, Mutual Mean-Teaching (MMT), to learn better features from the target domain via off-line refined hard pseudo labels and on-line refined soft pseudo labels.
arXiv Detail & Related papers (2020-01-06T12:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.