WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling
- URL: http://arxiv.org/abs/2408.16532v2
- Date: Tue, 22 Oct 2024 14:40:15 GMT
- Title: WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling
- Authors: Shengpeng Ji, Ziyue Jiang, Wen Wang, Yifu Chen, Minghui Fang, Jialong Zuo, Qian Yang, Xize Cheng, Zehan Wang, Ruiqi Li, Ziang Zhang, Xiaoda Yang, Rongjie Huang, Yidi Jiang, Qian Chen, Siqi Zheng, Wen Wang, Zhou Zhao,
- Abstract summary: A crucial component of language models is the tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens.
We introduce WavTokenizer, which offers several advantages over previous SOTA acoustic models in the audio domain.
WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information.
- Score: 65.30937248905958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.
Related papers
- A Closer Look at Neural Codec Resynthesis: Bridging the Gap between Codec and Waveform Generation [65.05719674893999]
We study two different strategies based on token prediction and regression, and introduce a new method based on Schr"odinger Bridge.
We examine how different design choices affect machine and human perception.
arXiv Detail & Related papers (2024-10-29T18:29:39Z) - Autoregressive Diffusion Transformer for Text-to-Speech Synthesis [39.32761051774537]
We propose encoding audio as vector sequences in continuous space $mathbb Rd$ and autoregressively generating these sequences.
High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing.
arXiv Detail & Related papers (2024-06-08T18:57:13Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
Deep generative models can generate high-fidelity audio conditioned on various types of representations.
These models are prone to generate audible artifacts when the conditioning is flawed or imperfect.
We propose a high-fidelity multi-band diffusion-based framework that generates any type of audio modality from low-bitrate discrete representations.
arXiv Detail & Related papers (2023-08-02T22:14:29Z) - High-Fidelity Audio Compression with Improved RVQGAN [49.7859037103693]
We introduce a high-fidelity universal neural audio compression algorithm that achieves 90x compression of 44.1 KHz audio into tokens at just 8kbps bandwidth.
We compress all domains (speech, environment, music, etc.) with a single universal model, making it widely applicable to generative modeling of all audio.
arXiv Detail & Related papers (2023-06-11T00:13:00Z) - Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion
Models [65.18102159618631]
multimodal generative modeling has created milestones in text-to-image and text-to-video generation.
Its application to audio still lags behind for two main reasons: the lack of large-scale datasets with high-quality text-audio pairs, and the complexity of modeling long continuous audio data.
We propose Make-An-Audio with a prompt-enhanced diffusion model that addresses these gaps.
arXiv Detail & Related papers (2023-01-30T04:44:34Z) - High Fidelity Neural Audio Compression [92.4812002532009]
We introduce a state-of-the-art real-time, high-fidelity, audio leveraging neural networks.
It consists in a streaming encoder-decoder architecture with quantized latent space trained in an end-to-end fashion.
We simplify and speed-up the training by using a single multiscale spectrogram adversary.
arXiv Detail & Related papers (2022-10-24T17:52:02Z) - RAVE: A variational autoencoder for fast and high-quality neural audio
synthesis [2.28438857884398]
We introduce a Realtime Audio Variational autoEncoder (RAVE) allowing both fast and high-quality audio waveform synthesis.
We show that our model is the first able to generate 48kHz audio signals, while simultaneously running 20 times faster than real-time on a standard laptop CPU.
arXiv Detail & Related papers (2021-11-09T09:07:30Z) - Vector-quantized neural networks for acoustic unit discovery in the
ZeroSpeech 2020 challenge [26.114011076658237]
We propose two neural models to tackle the problem of learning discrete representations of speech.
The first model is a type of vector-quantized variational autoencoder (VQ-VAE)
The second model combines vector quantization with contrastive predictive coding (VQ-CPC)
We evaluate the models on English and Indonesian data for the ZeroSpeech 2020 challenge.
arXiv Detail & Related papers (2020-05-19T13:06:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.