Examination of Code generated by Large Language Models
- URL: http://arxiv.org/abs/2408.16601v1
- Date: Thu, 29 Aug 2024 15:12:16 GMT
- Title: Examination of Code generated by Large Language Models
- Authors: Robin Beer, Alexander Feix, Tim Guttzeit, Tamara Muras, Vincent Müller, Maurice Rauscher, Florian Schäffler, Welf Löwe,
- Abstract summary: Large language models (LLMs) are transforming software development by automating code generation.
To assess the current state of LLMs in generating correct code of high quality, we conducted controlled experiments with ChatGPT and Copilot.
We observed significant differences between the LLMs, between the languages, between algorithm and test codes, and over time.
- Score: 35.51378656555693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs), such as ChatGPT and Copilot, are transforming software development by automating code generation and, arguably, enable rapid prototyping, support education, and boost productivity. Therefore, correctness and quality of the generated code should be on par with manually written code. To assess the current state of LLMs in generating correct code of high quality, we conducted controlled experiments with ChatGPT and Copilot: we let the LLMs generate simple algorithms in Java and Python along with the corresponding unit tests and assessed the correctness and the quality (coverage) of the generated (test) codes. We observed significant differences between the LLMs, between the languages, between algorithm and test codes, and over time. The present paper reports these results together with the experimental methods allowing repeated and comparable assessments for more algorithms, languages, and LLMs over time.
Related papers
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
We propose a pretraining strategy to enhance the integration of natural language and coding capabilities.
The resulting model, Crystal, demonstrates remarkable capabilities in both domains.
arXiv Detail & Related papers (2024-11-06T10:28:46Z) - Automatic Generation of Benchmarks and Reliable LLM Judgment for Code Tasks [0.8274693573069442]
This work introduces a methodology to generate and evaluate LaaJ implementations, utilizing an automatically generated benchmark.
The benchmark is used both to develop and validate the LaaJs and to validate and test the LLM code related solution using the LaaJs.
Our approach enables the creation of high quality code task solutions.
arXiv Detail & Related papers (2024-10-28T14:34:36Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
Large Language Models (LLMs) have achieved remarkable progress in code generation.
CodeIP is a novel multi-bit watermarking technique that embeds additional information to preserve provenance details.
Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP.
arXiv Detail & Related papers (2024-04-24T04:25:04Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Mutation-based Consistency Testing for Evaluating the Code Understanding
Capability of LLMs [5.549095839198671]
Large Language Models (LLMs) have shown remarkable capabilities in processing both natural and programming languages.
We propose a novel method to assess the code understanding performance of LLMs, particularly focusing on subtle differences between code and its descriptions.
We apply different types of code mutations, such as operator replacement and statement deletion, to generate inconsistent code-description pairs.
We conduct a case study on the two popular LLMs, GPT-3.5 and GPT-4, using the state-of-the-art code generation benchmark, HumanEval-X.
arXiv Detail & Related papers (2024-01-11T14:27:43Z) - Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity [0.0]
Large language models (LLMs) have demonstrated unparalleled prowess in mimicking human-like text generation and processing.
The potential to transform natural language prompts into executable code promises a major shift in software development practices.
arXiv Detail & Related papers (2023-11-10T23:41:41Z) - CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model [58.127534002232096]
This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM.
It is specifically designed for code-related tasks with both English and Chinese prompts.
CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset.
arXiv Detail & Related papers (2023-10-10T02:38:44Z) - Coarse-Tuning Models of Code with Reinforcement Learning Feedback [0.0]
Large Language Models (LLMs) pre-trained on code have emerged as the dominant approach to program synthesis.
We propose RLCF, that further trains a pre-trained LLM via reinforcement learning, using feedback from a grounding function that scores the quality of the code.
arXiv Detail & Related papers (2023-05-25T22:09:08Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
We propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results.
Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results.
LEVER consistently improves over the base code LLMs(4.6% to 10.9% with code-davinci) and achieves new state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-02-16T18:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.