Blending Low and High-Level Semantics of Time Series for Better Masked Time Series Generation
- URL: http://arxiv.org/abs/2408.16613v1
- Date: Thu, 29 Aug 2024 15:20:17 GMT
- Title: Blending Low and High-Level Semantics of Time Series for Better Masked Time Series Generation
- Authors: Johan Vik Mathisen, Erlend Lokna, Daesoo Lee, Erlend Aune,
- Abstract summary: We introduce a novel framework, termed NC-VQVAE, to integrate self-supervised learning into time series generation approaches.
Our experimental results demonstrate that NC-VQVAE results in a considerable improvement in the quality of synthetic samples.
- Score: 0.8999666725996975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art approaches in time series generation (TSG), such as TimeVQVAE, utilize vector quantization-based tokenization to effectively model complex distributions of time series. These approaches first learn to transform time series into a sequence of discrete latent vectors, and then a prior model is learned to model the sequence. The discrete latent vectors, however, only capture low-level semantics (\textit{e.g.,} shapes). We hypothesize that higher-fidelity time series can be generated by training a prior model on more informative discrete latent vectors that contain both low and high-level semantics (\textit{e.g.,} characteristic dynamics). In this paper, we introduce a novel framework, termed NC-VQVAE, to integrate self-supervised learning into those TSG methods to derive a discrete latent space where low and high-level semantics are captured. Our experimental results demonstrate that NC-VQVAE results in a considerable improvement in the quality of synthetic samples.
Related papers
- A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Vector Quantized Time Series Generation with a Bidirectional Prior Model [0.3867363075280544]
Time series generation (TSG) studies have mainly focused on the use of Generative Adversarial Networks (GANs) combined with recurrent neural network (RNN) variants.
We propose TimeVQVAE, the first work, to our knowledge, that uses vector quantization (VQ) techniques to address the TSG problem.
We also propose VQ modeling in a time-frequency domain, separated into low-frequency (LF) and high-frequency (HF)
arXiv Detail & Related papers (2023-03-08T17:27:39Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
This work presents DGHL, a new family of generative models for time series anomaly detection.
A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently.
Our method outperformed current state-of-the-art models on four popular benchmark datasets.
arXiv Detail & Related papers (2022-02-15T17:19:44Z) - Imputing Missing Observations with Time Sliced Synthetic Minority
Oversampling Technique [0.3973560285628012]
We present a simple yet novel time series imputation technique with the goal of constructing an irregular time series that is uniform across every sample in a data set.
We fix a grid defined by the midpoints of non-overlapping bins (dubbed "slices") of observation times and ensure that each sample has values for all of the features at that given time.
This allows one to both impute fully missing observations to allow uniform time series classification across the entire data and, in special cases, to impute individually missing features.
arXiv Detail & Related papers (2022-01-14T19:23:24Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
We propose a novel generative framework for time series data generation - RTSGAN.
RTSGAN learns an encoder-decoder module which provides a mapping between a time series instance and a fixed-dimension latent vector.
To generate time series with missing values, we further equip RTSGAN with an observation embedding layer and a decide-and-generate decoder.
arXiv Detail & Related papers (2021-11-16T11:31:37Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
We propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation.
We first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes framework, which enables our model to generate high-quality latent variables.
Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence.
arXiv Detail & Related papers (2021-03-19T09:01:14Z) - Learning from Irregularly-Sampled Time Series: A Missing Data
Perspective [18.493394650508044]
Irregularly-sampled time series occur in many domains including healthcare.
We model irregularly-sampled time series data as a sequence of index-value pairs sampled from a continuous but unobserved function.
We propose learning methods for this framework based on variational autoencoders and generative adversarial networks.
arXiv Detail & Related papers (2020-08-17T20:01:55Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.