SODAWideNet++: Combining Attention and Convolutions for Salient Object Detection
- URL: http://arxiv.org/abs/2408.16645v1
- Date: Thu, 29 Aug 2024 15:51:06 GMT
- Title: SODAWideNet++: Combining Attention and Convolutions for Salient Object Detection
- Authors: Rohit Venkata Sai Dulam, Chandra Kambhamettu,
- Abstract summary: We propose a novel encoder-decoder-style neural network called SODAWideNet++ designed explicitly for Salient Object Detection.
Inspired by the vision transformers ability to attain a global receptive field from the initial stages, we introduce the Attention Guided Long Range Feature Extraction (AGLRFE) module.
In contrast to the current paradigm of ImageNet pre-training, we modify 118K annotated images from the COCO semantic segmentation dataset by binarizing the annotations to pre-train the proposed model end-to-end.
- Score: 3.2586315449885106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Salient Object Detection (SOD) has traditionally relied on feature refinement modules that utilize the features of an ImageNet pre-trained backbone. However, this approach limits the possibility of pre-training the entire network because of the distinct nature of SOD and image classification. Additionally, the architecture of these backbones originally built for Image classification is sub-optimal for a dense prediction task like SOD. To address these issues, we propose a novel encoder-decoder-style neural network called SODAWideNet++ that is designed explicitly for SOD. Inspired by the vision transformers ability to attain a global receptive field from the initial stages, we introduce the Attention Guided Long Range Feature Extraction (AGLRFE) module, which combines large dilated convolutions and self-attention. Specifically, we use attention features to guide long-range information extracted by multiple dilated convolutions, thus taking advantage of the inductive biases of a convolution operation and the input dependency brought by self-attention. In contrast to the current paradigm of ImageNet pre-training, we modify 118K annotated images from the COCO semantic segmentation dataset by binarizing the annotations to pre-train the proposed model end-to-end. Further, we supervise the background predictions along with the foreground to push our model to generate accurate saliency predictions. SODAWideNet++ performs competitively on five different datasets while only containing 35% of the trainable parameters compared to the state-of-the-art models. The code and pre-computed saliency maps are provided at https://github.com/VimsLab/SODAWideNetPlusPlus.
Related papers
- Multi-Scale Feature Prediction with Auxiliary-Info for Neural Image Compression [13.076563599765176]
We introduce a new predictive structure consisting of the auxiliary coarse network and the main network, inspired by neural video compression.
Our model outperforms other neural image compression models and achieves a 19.49% higher rate-distortion performance than VVC on Tecnick dataset.
arXiv Detail & Related papers (2024-09-19T12:41:53Z) - Object Detection in Thermal Images Using Deep Learning for Unmanned
Aerial Vehicles [0.9208007322096533]
This work presents a neural network model capable of recognizing small and tiny objects in thermal images collected by unmanned aerial vehicles.
The backbone is developed based on the structure of YOLOv5 combined with the use of a transformer encoder at the end.
The neck includes a BI-FPN block combined with the use of a sliding window and a transformer to increase the information fed into the prediction head.
arXiv Detail & Related papers (2024-02-13T06:40:55Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - SODAWideNet -- Salient Object Detection with an Attention augmented Wide
Encoder Decoder network without ImageNet pre-training [3.66237529322911]
We explore developing a neural network from scratch directly trained on Salient Object Detection without ImageNet pre-training.
We propose SODAWideNet, an encoder-decoder-style network for Salient Object Detection.
Two variants, SODAWideNet-S (3.03M) and SODAWideNet (9.03M), achieve competitive performance against state-of-the-art models on five datasets.
arXiv Detail & Related papers (2023-11-08T16:53:44Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA Nets)
Their core building blocks are Dynamic Alignment Units (DAUs), which are optimised to transform their inputs with dynamically computed weight vectors that align with task-relevant patterns.
CoDA Nets model the classification prediction through a series of input-dependent linear transformations, allowing for linear decomposition of the output into individual input contributions.
arXiv Detail & Related papers (2021-09-27T12:39:46Z) - Retrieval Augmentation to Improve Robustness and Interpretability of
Deep Neural Networks [3.0410237490041805]
In this work, we actively exploit the training data to improve the robustness and interpretability of deep neural networks.
Specifically, the proposed approach uses the target of the nearest input example to initialize the memory state of an LSTM model or to guide attention mechanisms.
Results show the effectiveness of the proposed models for the two tasks, on the widely used Flickr8 and IMDB datasets.
arXiv Detail & Related papers (2021-02-25T17:38:31Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
We present a deep interleaved network (DIN) that learns how information at different states should be combined for high-quality (HQ) images reconstruction.
In this paper, we propose asymmetric co-attention (AsyCA) which is attached at each interleaved node to model the feature dependencies.
Our presented DIN can be trained end-to-end and applied to various image restoration tasks.
arXiv Detail & Related papers (2020-10-29T15:32:00Z) - Monocular 3D Detection with Geometric Constraints Embedding and
Semi-supervised Training [3.8073142980733]
We propose a novel framework for monocular 3D objects detection using only RGB images, called KM3D-Net.
We design a fully convolutional model to predict object keypoints, dimension, and orientation, and then combine these estimations with perspective geometry constraints to compute position attribute.
arXiv Detail & Related papers (2020-09-02T00:51:51Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.