Generic Objects as Pose Probes for Few-shot View Synthesis
- URL: http://arxiv.org/abs/2408.16690v3
- Date: Fri, 03 Jan 2025 15:05:06 GMT
- Title: Generic Objects as Pose Probes for Few-shot View Synthesis
- Authors: Zhirui Gao, Renjiao Yi, Chenyang Zhu, Ke Zhuang, Wei Chen, Kai Xu,
- Abstract summary: Radiance fields including NeRFs and 3D Gaussians demonstrate great potential in high-fidelity rendering and scene reconstruction.
COLMAP is frequently employed for preprocessing to estimate poses.
We aim to tackle few-view NeRF reconstruction using only 3 to 6 unposed scene images.
- Score: 14.768563613747633
- License:
- Abstract: Radiance fields including NeRFs and 3D Gaussians demonstrate great potential in high-fidelity rendering and scene reconstruction, while they require a substantial number of posed images as inputs. COLMAP is frequently employed for preprocessing to estimate poses, while it necessitates a large number of feature matches to operate effectively, and it struggles with scenes characterized by sparse features, large baselines between images, or a limited number of input images. We aim to tackle few-view NeRF reconstruction using only 3 to 6 unposed scene images. Traditional methods often use calibration boards but they are not common in images. We propose a novel idea of utilizing everyday objects, commonly found in both images and real life, as "pose probes". The probe object is automatically segmented by SAM, whose shape is initialized from a cube. We apply a dual-branch volume rendering optimization (object NeRF and scene NeRF) to constrain the pose optimization and jointly refine the geometry. Specifically, object poses of two views are first estimated by PnP matching in an SDF representation, which serves as initial poses. PnP matching, requiring only a few features, is suitable for feature-sparse scenes. Additional views are incrementally incorporated to refine poses from preceding views. In experiments, PoseProbe achieves state-of-the-art performance in both pose estimation and novel view synthesis across multiple datasets. We demonstrate its effectiveness, particularly in few-view and large-baseline scenes where COLMAP struggles. In ablations, using different objects in a scene yields comparable performance. Our project page is available at: \href{https://zhirui-gao.github.io/PoseProbe.github.io/}{this https URL}
Related papers
- FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views [93.6881532277553]
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images.
Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes.
arXiv Detail & Related papers (2025-02-17T18:54:05Z) - Fillerbuster: Multi-View Scene Completion for Casual Captures [48.12462469832712]
We present Fillerbuster, a method that completes unknown regions of a 3D scene by utilizing a novel large-scale multi-view latent diffusion transformer.
Our solution is to train a generative model that can consume a large context of input frames while generating unknown target views and recovering image poses when desired.
arXiv Detail & Related papers (2025-02-07T18:59:51Z) - PF-LRM: Pose-Free Large Reconstruction Model for Joint Pose and Shape
Prediction [77.89935657608926]
We propose a Pose-Free Large Reconstruction Model (PF-LRM) for reconstructing a 3D object from a few unposed images.
PF-LRM simultaneously estimates the relative camera poses in 1.3 seconds on a single A100 GPU.
arXiv Detail & Related papers (2023-11-20T18:57:55Z) - Generalizable Pose Estimation Using Implicit Scene Representations [4.124185654280966]
6-DoF pose estimation is an essential component of robotic manipulation pipelines.
We address the generalization capability of pose estimation using models that contain enough information to render it in different poses.
Our final evaluation shows a significant improvement in inference performance and speed compared to existing approaches.
arXiv Detail & Related papers (2023-05-26T20:42:52Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
We propose PoseMatcher, an accurate model free one-shot object pose estimator.
We create a new training pipeline for object to image matching based on a three-view system.
To enable PoseMatcher to attend to distinct input modalities, an image and a pointcloud, we introduce IO-Layer.
arXiv Detail & Related papers (2023-04-03T21:14:59Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - One-Shot Neural Fields for 3D Object Understanding [112.32255680399399]
We present a unified and compact scene representation for robotics.
Each object in the scene is depicted by a latent code capturing geometry and appearance.
This representation can be decoded for various tasks such as novel view rendering, 3D reconstruction, and stable grasp prediction.
arXiv Detail & Related papers (2022-10-21T17:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.