Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling
- URL: http://arxiv.org/abs/2408.16737v2
- Date: Mon, 7 Oct 2024 19:37:10 GMT
- Title: Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling
- Authors: Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q. Tran, Mehran Kazemi,
- Abstract summary: Training on high-quality synthetic data from strong language models (LMs) is a common strategy to improve the reasoning performance of LMs.
We investigate the trade-offs between generating synthetic data using a stronger but more expensive (SE) model versus a weaker but cheaper (WC) model.
- Score: 18.23215026159686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training on high-quality synthetic data from strong language models (LMs) is a common strategy to improve the reasoning performance of LMs. In this work, we revisit whether this strategy is compute-optimal under a fixed inference budget (e.g., FLOPs). To do so, we investigate the trade-offs between generating synthetic data using a stronger but more expensive (SE) model versus a weaker but cheaper (WC) model. We evaluate the generated data across three key metrics: coverage, diversity, and false positive rate, and show that the data from WC models may have higher coverage and diversity, but also exhibit higher false positive rates. We then finetune LMs on data from SE and WC models in different settings: knowledge distillation, self-improvement, and a novel weak-to-strong improvement setup where a weaker LM teaches reasoning to a stronger LM. Our findings reveal that models finetuned on WC-generated data consistently outperform those trained on SE-generated data across multiple benchmarks and multiple choices of WC and SE models. These results challenge the prevailing practice of relying on SE models for synthetic data generation, suggesting that WC may be the compute-optimal approach for training advanced LM reasoners.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - The Delta Learning Hypothesis: Preference Tuning on Weak Data can Yield Strong Gains [50.66245575710432]
We show that paired preference data consisting of individually weak data points can enable gains beyond the strength of each individual data point.<n>Our work shows that models can learn surprisingly well from paired data that might typically be considered weak.
arXiv Detail & Related papers (2025-07-08T17:14:44Z) - Escaping Collapse: The Strength of Weak Data for Large Language Model Training [15.77316232527746]
We develop a theoretical framework to investigate how much curation is needed in order to ensure that LLM performance continually improves.
We describe a training procedure that converges to an optimal LLM even if almost all of the non-synthetic training data is of poor quality.
arXiv Detail & Related papers (2025-02-13T03:20:37Z) - Evaluating Language Models as Synthetic Data Generators [74.80905172696366]
AgoraBench is a benchmark that provides standardized settings and metrics to evaluate LMs' data generation abilities.
Through synthesizing 1.26 million training instances using 6 LMs and training 99 student models, we uncover key insights about LMs' data generation capabilities.
arXiv Detail & Related papers (2024-12-04T19:20:32Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Self-Training with Direct Preference Optimization Improves Chain-of-Thought Reasoning [5.487210426671288]
In this work, we demonstrate that the reasoning abilities of small-scale LMs can be enhanced through self-training.
We also show that the conventional self-training can be further augmented by a preference learning algorithm called Direct Preference Optimization.
arXiv Detail & Related papers (2024-07-25T17:59:16Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold [41.28168368547099]
Training on model-generated synthetic data is a promising approach for finetuning LLMs, but it remains unclear when it helps or hurts.
We show that training on per-step negatives can help to unlearn spurious correlations in the positive data.
arXiv Detail & Related papers (2024-06-20T17:45:54Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
We study self-training as one of the predominant semi-supervised learning approaches.
We present UPET, a novel Uncertainty-aware self-Training framework.
We show that UPET achieves a substantial improvement in terms of performance and efficiency.
arXiv Detail & Related papers (2023-10-19T02:18:29Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
We propose a ranking-based training method called Discounted Rank Upweighting (DRU) to learn models that exhibit strong OOD performance on the test data.
Results on several synthetic and real-world datasets highlight the superior ability of our group-ranking-based (akin to soft-minimax) approach in selecting and learning models that are robust to group distributional shifts.
arXiv Detail & Related papers (2023-05-09T20:37:16Z) - Distilling Step-by-Step! Outperforming Larger Language Models with Less
Training Data and Smaller Model Sizes [91.58845026796149]
We introduce Distilling step-by-step, a new mechanism that trains small models that outperform large language models.
We present three findings across 4 NLP benchmarks.
arXiv Detail & Related papers (2023-05-03T17:50:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.