Anomalous multi-gap topological phases in periodically driven quantum rotors
- URL: http://arxiv.org/abs/2408.16848v1
- Date: Thu, 29 Aug 2024 18:27:16 GMT
- Title: Anomalous multi-gap topological phases in periodically driven quantum rotors
- Authors: Volker Karle, Mikhail Lemeshko, Adrien Bouhon, Robert-Jan Slager, F. Nur Ünal,
- Abstract summary: periodically driven quantum rotors provide a promising and broadly applicable platform to implement multi-gap topological phases.
We report on the emergence of an anomalous Dirac string phase arising in the strongly driven regime.
Results reveal direct applications in state-of-the-art experiments of quantum rotors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate that periodically driven quantum rotors provide a promising and broadly applicable platform to implement multi-gap topological phases, where groups of bands can acquire topological invariants due to non-Abelian braiding of band degeneracies. By adiabatically varying the periodic kicks to the rotor we find nodal-line braiding, which causes sign flips of topological charges of band nodes and can prevent them from annihilating, indicated by non-zero values of the %non-Abelian patch Euler class. In particular, we report on the emergence of an anomalous Dirac string phase arising in the strongly driven regime, a truly out-of-equilibrium phase of the quantum rotor. This phase emanates from braiding processes involving all (quasienergy) gaps and manifests itself with edge states at zero angular momentum. Our results reveal direct applications in state-of-the-art experiments of quantum rotors, such as linear molecules driven by periodic far-off-resonant laser pulses or artificial quantum rotors in optical lattices, whose extensive versatility offers precise modification and observation of novel non-Abelian topological properties.
Related papers
- Of gyrators and anyons [0.0]
We show how generic multiterminal circuits can be expressed as gyrator networks with quantized gyration conductance.
Circular scattering in three-terminal quantum dot chains gives rise to a flat topological ground state.
We provide concepts for error correction protocols, and quantum simulations of interacting fermionic (or generally anyonic) many-body systems.
arXiv Detail & Related papers (2024-10-28T08:34:22Z) - Long-lived topological time-crystalline order on a quantum processor [16.781279220543517]
Topologically ordered phases of matter elude Landau's symmetry-breaking theory.
We report the observation of signatures of such a phenomenon with programmable superconducting qubits arranged on a square lattice.
We further connect the observed dynamics to the underlying topological order by measuring a nonzero topological entanglement entropy.
arXiv Detail & Related papers (2024-01-09T03:20:15Z) - Wave packet dynamics and edge transport in anomalous Floquet topological
phases [0.0]
An anomalous Floquet topological phase can in general generate more robust chiral edge motion than a Haldane phase.
Our results demonstrate that the rich interplay of wave packet dynamics and topological edge states can serve as a versatile tool in ultracold quantum gases in optical lattices.
arXiv Detail & Related papers (2023-02-16T18:45:49Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Floquet multi-gap topology: Non-Abelian braiding and anomalous Dirac
string phase [0.0]
Topological phases of matter span a wide area of research shaping fundamental pursuits and offering promise for future applications.
The past two years have witnessed the rise of novel multi-gap dependent topological states.
We report on uncharted anomalous phases and properties that can only arise in out-of-equilibrium Floquet settings.
arXiv Detail & Related papers (2022-08-26T18:00:03Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z) - Quantum signatures of transitions from stable fixed points to limit
cycles in optomechanical systems [7.749074148822401]
We study the quantum signatures of transitions from stable fixed points to limit cycles in an optomechanical phonon laser system.
Most strikingly, the entanglement quite close to the boundary line keeps as a constant, and it is very robust to the thermal phonon noise.
arXiv Detail & Related papers (2020-01-07T01:46:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.