Experimental measurement and a physical interpretation of quantum shadow enumerators
- URL: http://arxiv.org/abs/2408.16914v1
- Date: Thu, 29 Aug 2024 21:25:56 GMT
- Title: Experimental measurement and a physical interpretation of quantum shadow enumerators
- Authors: Daniel Miller, Kyano Levi, Lukas Postler, Alex Steiner, Lennart Bittel, Gregory A. L. White, Yifan Tang, Eric J. Kuehnke, Antonio A. Mele, Sumeet Khatri, Lorenzo Leone, Jose Carrasco, Christian D. Marciniak, Ivan Pogorelov, Milena Guevara-Bertsch, Robert Freund, Rainer Blatt, Philipp Schindler, Thomas Monz, Martin Ringbauer, Jens Eisert,
- Abstract summary: We develop a rigorous framework for the direct measurement of quantum weight enumerators.
We experimentally demonstrate the possibility of directly measuring weight enumerators on a trapped-ion quantum computer.
- Score: 2.2625632663936095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Throughout its history, the theory of quantum error correction has heavily benefited from translating classical concepts into the quantum setting. In particular, classical notions of weight enumerators, which relate to the performance of an error-correcting code, and MacWilliams' identity, which helps to compute enumerators, have been generalized to the quantum case. In this work, we establish a distinct relationship between the theoretical machinery of quantum weight enumerators and a seemingly unrelated physics experiment: we prove that Rains' quantum shadow enumerators - a powerful mathematical tool - arise as probabilities of observing fixed numbers of triplets in a Bell sampling experiment. This insight allows us to develop here a rigorous framework for the direct measurement of quantum weight enumerators, thus enabling experimental and theoretical studies of the entanglement structure of any quantum error-correcting code or state under investigation. On top of that, we derive concrete sample complexity bounds and physically-motivated robustness guarantees against unavoidable experimental imperfections. Finally, we experimentally demonstrate the possibility of directly measuring weight enumerators on a trapped-ion quantum computer. Our experimental findings are in good agreement with theoretical predictions and illuminate how entanglement theory and quantum error correction can cross-fertilize each other once Bell sampling experiments are combined with the theoretical machinery of quantum weight enumerators.
Related papers
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Error-analysis for the Sorkin and Peres tests performed on a quantum
computer [0.0]
We use quantum computers to test the foundations of quantum mechanics through quantum algorithms.
We show how the algorithms can be used to test the efficacy of a quantum computer in obeying the postulates of quantum mechanics.
arXiv Detail & Related papers (2022-07-27T15:32:30Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Experimental progress on quantum coherence: detection, quantification,
and manipulation [55.41644538483948]
Recently there has been significant interest in the characterization of quantum coherence as a resource.
We discuss the main platforms for realizing the experiments: linear optics, nuclear magnetic resonance, and superconducting systems.
We also review experiments exploring the connections between coherence and uncertainty relations, path information, and coherence of operations and measurements.
arXiv Detail & Related papers (2021-05-14T14:30:47Z) - Probing the limits of quantum theory with quantum information at
subnuclear scales [0.13844779265721088]
We propose a new theoretical framework of Q-data tests.
It recognises the established validity of quantum theory, but allows for more general -- 'post-quantum' -- scenarios in certain physical regimes.
arXiv Detail & Related papers (2021-03-22T16:47:39Z) - Observing the fate of the false vacuum with a quantum laboratory [0.0]
We design and implement a quantum laboratory to experimentally observe and study dynamical processes of quantum field theories.
This is the first time it has been possible to experimentally measure instanton processes in a freely chosen quantum field theory.
arXiv Detail & Related papers (2020-06-10T18:00:05Z) - Demonstration of quantum delayed-choice experiment on a quantum computer [1.4247965743943851]
We show that coexistence of wave and particle nature emerges as a consequence of the uncertainty in the quantum controlled experimental setup.
We also show that an entanglement-assisted scheme of the same reproduces the predictions of quantum mechanics.
arXiv Detail & Related papers (2020-04-09T16:11:25Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.